Data Publications

Ring-shear test data of quartz sand from the Tectonic Modelling Lab of the University of Bern (CH)

hasData_Center_Short_Name
  • Deutsches GeoForschungsZentrum GFZ
hasDataset_Online_Resource
hasDataset_Release_Date
  • 2018
hasDataset_Title
  • Ring-shear test data of quartz sand from the Tectonic Modelling Lab of the University of Bern (CH)
hasEntry_ID
  • 10.5880/fidgeo.2018.028
hasKeyword
  • EPOS
  • analogue models of geologic processes
  • software tools
  • property data of analogue modelling materials
  • Multi-scale Laboratories
hasSummary
  • This dataset provides internal and basal (wall) friction data from ring-shear tests (RST) on a quartz sand material that has been used in tectonic experiments in Zwaan et al. (2016, 2017), Zwaan and Scheurs (2017) and in the Tectonic Modelling Lab of the University of Bern (CH) as an analogue for brittle layers in the crust or lithosphere. The material has been characterized by means of internal and basal friction coefficients μ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for the Tectonic Modelling Lab of the University of Bern (UB). According to our analysis the material behaves as a Mohr-Coulomb material characterized by a linear failure envelope. Internal peak, dynamic and reactivation friction coefficients are μP = 0.73, μD = 0.61, and μR = 0.66, respectively. Internal cohesions C are in the range of 10 to 70 Pa. Basal peak, dynamic and reactivation friction coefficients are μP = 0.41, μD = 0.35, and μR = 0.36, respectively, whereas basal cohesions C are in the range of 120 to 150 Pa. The rate dependency of the internal dynamic friction coefficient is insignificant (<1%).
GCMD Sciencekeywords describing the dataset. Click on Keyword to find similar datasets