A megamaser is a type of astrophysical maser, which is a naturally occurring source of stimulated spectral line emission. Megamasers are distinguished from other astrophysical masers by their large isotropic luminosity. Megamasers have typical luminosities of 103 solar luminosities (L☉), which is 100 million times brighter than masers in the Milky Way, hence the prefix mega. Likewise, the term kilomaser is used to describe masers outside the Milky Way that have luminosities of order L☉, or thousands of times stronger than the average maser in the Milky Way, gigamaser is used to describe masers billions of times stronger than the average maser in the Milky Way, and extragalactic maser encompasses all masers found outside the Milky Way. Most known extragalactic masers are megamasers, and the majority of megamasers are hydroxyl (OH) megamasers, meaning the spectral line being amplified is one due to a transition in the hydroxyl molecule. There are known megamasers for three other molecules: water (H2O), formaldehyde (H2CO), and methine (CH). Water megamasers were the first type of megamaser discovered. The first water megamaser was found in 1979 in NGC 4945, a galaxy in the nearby Centaurus A/M83 Group. The first hydroxyl megamaser was found in 1982 in Arp 220, which is the nearest ultraluminous infrared galaxy to the Milky Way. All subsequent OH megamasers that have been discovered are also in luminous infrared galaxies, and there are a small number of OH kilomasers hosted in galaxies with lower infrared luminosities. Most luminous infrared galaxies have recently merged or interacted with another galaxy, and are undergoing a burst of star formation. Many of the characteristics of the emission in hydroxyl megamasers are distinct from that of hydroxyl masers within the Milky Way, including the amplification of background radiation and the ratio of hydroxyl lines at different frequencies. The population inversion in hydroxyl molecules is produced by far infrared radiation that results from absorption and re-emission of light from forming stars by surrounding interstellar dust. Zeeman splitting of hydroxyl megamaser lines may be used to measure magnetic fields in the masing regions, and this application represents the first detection of Zeeman splitting in a galaxy other than the Milky Way. Water megamasers and kilomasers are found primarily associated with active galactic nuclei, while galactic and weaker extragalactic water masers are found in star forming regions. Despite different environments, the circumstances that produce extragalactic water masers do not seem to be very different from those that produce galactic water masers. Observations of water megamasers have been used to make accurate measurements of distances to galaxies in order to provide constraints on the Hubble constant.