Mean anomaly

prefLabel
  • Mean anomaly
inScheme
broader
Abstract from DBPedia
    In celestial mechanics, the mean anomaly is the fraction of an elliptical orbit's period that has elapsed since the orbiting body passed periapsis, expressed as an angle which can be used in calculating the position of that body in the classical two-body problem. It is the angular distance from the pericenter which a fictitious body would have if it moved in a circular orbit, with constant speed, in the same orbital period as the actual body in its elliptical orbit.

    平均近点角(へいきんきんてんかく、mean anomaly)とは、軌道運動を行う天体のある時刻における位置を表すパラメータの1つである。平均近点離角と呼ぶ場合もある。平均近点角は天体が近点 z を通過してからの経過時間を軌道周期に対する割合として表すもので、角度の次元となり、近点では 2π ラジアン (1周、360°) の整数倍となる。図で平均近点角は M(角 zcy)である。また角度 T, E をそれぞれ真近点角、離心近点角と呼ぶ(Tはvと表記されることも多い)。 天体 p の平均近点角M を与える点 y は以下のように定義される。すなわち、楕円軌道の長半径 cz を半径とする同心円において、扇形 zcy の面積が軌道楕円における扇形 zsp の面積と楕円率(長半径 a と短半径 b の比 b/a)の逆数との積に等しくなるような円上の点が y となる。言い換えれば、扇形 zcy と扇形 xsz は面積が等しい。

    (Source: http://dbpedia.org/resource/Mean_anomaly)