Abstract from DBPedia | In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. It can be defined between two lines (or two line segments), between a line and a plane, and between two planes. Perpendicularity is one particular instance of the more general mathematical concept of orthogonality; perpendicularity is the orthogonality of classical geometric objects. Thus, in advanced mathematics, the word "perpendicular" is sometimes used to describe much more complicated geometric orthogonality conditions, such as that between a surface and its normal vector.垂直(すいちょく、英: perpendicular)であること、すなわち垂直性 (perpendicularity) はある一方の直線を適当に平行移動させた時、直角に交わる二つの直線の間の関係性を言う。つまり、その2直線が交わっても、ねじれでも垂直の場合がある。但し、中学校までは、交わる場合のみを扱うことが多い。この性質は関連するほかの幾何学的対象に対しても拡張される。 垂線 (perpendicular) に関連して垂線の「足」("foot") という術語がしばしば用いられる。考える図形の向きは如何様にも変えることができるから、足と謂えどもそれが必ずしも図形の下方にあるわけではない。 垂直性はより一般の数学概念である直交性の特別の場合と考えられる。すなわち、垂直性とは古典的な幾何学的対象に関する直交性を言うものである。ゆえに、より進んだ数学において、より複雑な幾何学的直交性(例えば曲面とその法線の関係など)に対して「垂直」あるいは「垂線」のような語を用いることもある。 (Source: http://dbpedia.org/resource/Perpendicular) |