Abstract from DBPedia | In mathematics, the slope or gradient of a line is a number that describes both the direction and the steepness of the line. Slope is often denoted by the letter m; there is no clear answer to the question why the letter m is used for slope, but its earliest use in English appears in O'Brien (1844) who wrote the equation of a straight line as "y = mx + b" and it can also be found in Todhunter (1888) who wrote it as "y = mx + c". Slope is calculated by finding the ratio of the "vertical change" to the "horizontal change" between (any) two distinct points on a line. Sometimes the ratio is expressed as a quotient ("rise over run"), giving the same number for every two distinct points on the same line. A line that is decreasing has a negative "rise". The line may be practical – as set by a road surveyor, or in a diagram that models a road or a roof either as a description or as a plan. The steepness, incline, or grade of a line is measured by the absolute value of the slope. A slope with a greater absolute value indicates a steeper line. The direction of a line is either increasing, decreasing, horizontal or vertical.
* A line is increasing if it goes up from left to right. The slope is positive, i.e. .
* A line is decreasing if it goes down from left to right. The slope is negative, i.e. .
* If a line is horizontal the slope is zero. This is a constant function.
* If a line is vertical the slope is undefined (see below). The rise of a road between two points is the difference between the altitude of the road at those two points, say y1 and y2, or in other words, the rise is (y2 − y1) = Δy. For relatively short distances, where the Earth's curvature may be neglected, the run is the difference in distance from a fixed point measured along a level, horizontal line, or in other words, the run is (x2 − x1) = Δx. Here the slope of the road between the two points is simply described as the ratio of the altitude change to the horizontal distance between any two points on the line. In mathematical language, the slope m of the line is The concept of slope applies directly to grades or gradients in geography and civil engineering. Through trigonometry, the slope m of a line is related to its angle of inclination θ by the tangent function Thus, a 45° rising line has a slope of +1 and a 45° falling line has a slope of −1. As a generalization of this practical description, the mathematics of differential calculus defines the slope of a curve at a point as the slope of the tangent line at that point. When the curve is given by a series of points in a diagram or in a list of the coordinates of points, the slope may be calculated not at a point but between any two given points. When the curve is given as a continuous function, perhaps as an algebraic expression, then the differential calculus provides rules giving a formula for the slope of the curve at any point in the middle of the curve. This generalization of the concept of slope allows very complex constructions to be planned and built that go well beyond static structures that are either horizontals or verticals, but can change in time, move in curves, and change depending on the rate of change of other factors. Thereby, the simple idea of slope becomes one of the main basis of the modern world in terms of both technology and the built environment.数学における平面上の直線の傾き（かたむき、英: slope）あるいは勾配（こうばい、英: gradient）は、その傾斜の具合を表す数値である。ただし、鉛直線に対する傾きは定義されない。一般的な用語として水平は傾いているとは言われないが、数学では「傾き０」とされ水平も傾きに含まれる。 傾きは普通、直線上の2点間の変化の割合、すなわち x の増加量に対する y の増加量の比率として定義される。また、同値な定義として、傾き m は傾斜角を θ として と書くことができる。 曲線上の微分可能な1点に対しても、傾斜の具合を表す数値（微分係数）が、傾きの考え方により定義できる。 傾きの概念は、地理学および土木工学における斜度や勾配（たとえば道路など）に直接応用される。 (Source: http://dbpedia.org/resource/Slope) |