Polygon

prefLabel
  • polygon
definition
  • In the vector type of GIS internal data organization spatial data are conveniently divided into point, line and polygon types. Some vector GIS store information in the form of points, line segments and point pairs; others maintain close lists of points defining polygon regions.
inScheme
broader
Abstract from DBPedia
    In geometry, a polygon (/ˈpɒlɪɡɒn/) is a plane figure that is described by a finite number of straight line segments connected to form a closed polygonal chain (or polygonal circuit). The bounded plane region, the bounding circuit, or the two together, may be called a polygon. The segments of a polygonal circuit are called its edges or sides. The points where two edges meet are the polygon's vertices (singular: vertex) or corners. The interior of a solid polygon is sometimes called its body. An n-gon is a polygon with n sides; for example, a triangle is a 3-gon. A simple polygon is one which does not intersect itself. Mathematicians are often concerned only with the bounding polygonal chains of simple polygons and they often define a polygon accordingly. A polygonal boundary may be allowed to cross over itself, creating star polygons and other self-intersecting polygons. A polygon is a 2-dimensional example of the more general polytope in any number of dimensions. There are many more defined for different purposes.

    初等幾何学における多辺形(たへんけい、英: polylateral)または多角形(たかっけい、英: polygon; [ˈpɒlɪɡɒn])は、閉あるいは閉曲線を成す、線分の閉じた有限鎖で囲まれたを言う。多角形を構成するこれら線分をその多角形の辺 (edge, side) と呼び、それらの二つの辺が交わる点をその多角形の頂点 (vertex, corner) と呼ぶ。n 個の辺を持つ多角形は n-角形 (n-gon) あるいは n-辺形 (n-lateral) と呼ぶ。例えば三角形は三辺形である。多角形は、より一般の任意次元における超多面体の二次元の例になっている。 多角形に関する基本的な幾何学的概念は特定の目的に応じて様々な方法で適応されてきた。数学においてはしばしば有界な閉折れ線や自己交叉を持たないに限って問題にするため、そのようなもののみ多角形と呼ぶこともある。他方、多角形の境界が自分自身と交わることを許す流儀もあり、その場合星型多角形やその他のが形作られる。その他の多角形の一般化については。 多角形 (poly­gon) の語は、「多い」を意味する希: πολύς (ラテン転写: polús) と「角」(カド)を意味する希: γωνία (ラテン転写: gōnía, cōnía) に由来する。二つの相隣る (adjacent) 辺とそれらの交点としての頂点の成す幾何学的対象が角(カク、平面角)で、その大きさを測る数値(測度)を角度(角の測度)と呼ぶ。 なお、図形に関してはしばしば、その周辺の枠だけについて議論しているのか、面としてその内側と外側を区別しているのか曖昧なことがあるが、多角形についても同様であり、たとえば後者について議論していることを明確にするために「面分」(「線分」からの類推)などといった語が使われることなどがある。 面についての考慮をともなわない、「点と辺からなる対象」としては、(グラフ理論の意味の)「グラフ」の一種とみなすことができ、(多角形に限らないが)図形やグラフの特徴などについて、しばしば相互の用語などを使って説明などがなされることがある(一例として、多面体グラフの記事を参照のこと)。

    (Source: http://dbpedia.org/resource/Polygon)