Data mining

  • Data Mining
  • Data mining is a variety of techniques used to identify nuggets of information or decision-making knowledge in bodies of data, and extracting these in such a way that they can be put to use in areas such as decision support, prediction, forecasting, and estimation. The data is often voluminous but, as it stands, of low value as no direct use can be made of it; it is the hidden information in the data that is useful.
Abstract from DBPedia
    Data mining is an interdisciplinary subfield of computer science. It is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. The term is a misnomer, because the goal is the extraction of patterns and knowledge from large amounts of data, not the extraction (mining) of data itself.It also is a buzzword and is frequently applied to any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) as well as any application of computer decision support system, including artificial intelligence, machine learning, and business intelligence. The book Data mining: Practical machine learning tools and techniques with Java (which covers mostly machine learning material) was originally to be named just Practical machine learning, and the term data mining was only added for marketing reasons. Often the more general terms (large scale) data analysis and analytics – or, when referring to actual methods, artificial intelligence and machine learning – are more appropriate. The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, but do belong to the overall KDD process as additional steps. The related terms data dredging, data fishing, and data snooping refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) too small for reliable statistical inferences to be made about the validity of any patterns discovered. These methods can, however, be used in creating new hypotheses to test against the larger data populations.

    データマイニング(英語: Data mining)とは、統計学、パターン認識、人工知能等のデータ解析の技法を大量のデータに網羅的に適用することで知識を取り出す技術のことである。DMと略して呼ばれる事もある。通常のデータの扱い方からは想像が及びにくい、ヒューリスティク(heuristic、発見的)な知識獲得が可能であるという期待を含意していることが多い。とくにテキストを対象とするものをテキストマイニング、そのなかでもウェブページを対象にしたものをウェブマイニングと呼ぶ。英語では"Data mining"の語の直接の起源となった研究分野であるknowledge-discovery in databases(データベースからの知識発見)の頭文字をとってKDDとも呼ばれる。