Gravitational singularities

prefLabel
  • Gravitational singularities
altLabel
  • Cosmic singularities
  • Singularity
  • Space-time singularities
  • Spacetime singularities
related
narrower
inScheme
broader
Abstract from DBPedia
    A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is so intense that spacetime itself breaks down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete. Gravitational singularities are mainly considered in the context of general relativity, where density apparently becomes infinite at the center of a black hole, and within astrophysics and cosmology as the earliest state of the universe during the Big Bang/White Hole. Physicists are undecided whether the prediction of singularities means that they actually exist (or existed at the start of the Big Bang), or that current knowledge is insufficient to describe what happens at such extreme densities. General relativity predicts that any object collapsing beyond a certain point (for stars this is the Schwarzschild radius) would form a black hole, inside which a singularity (covered by an event horizon) would be formed. The Penrose–Hawking singularity theorems define a singularity to have geodesics that cannot be extended in a smooth manner. The termination of such a geodesic is considered to be the singularity. The initial state of the universe, at the beginning of the Big Bang, is also predicted by modern theories to have been a singularity. In this case, the universe did not collapse into a black hole, because currently-known calculations and density limits for gravitational collapse are usually based upon objects of relatively constant size, such as stars, and do not necessarily apply in the same way to rapidly expanding space such as the Big Bang. Neither general relativity nor quantum mechanics can currently describe the earliest moments of the Big Bang, but in general, quantum mechanics does not permit particles to inhabit a space smaller than their wavelengths.

    重力の特異点(じゅうりょくのとくいてん、gravitational singularity)は、概略的には「重力場が無限大となるような場所」のことである。 重力場の量には曲率や物質の密度の量について含んでいる。時空の特異点で重要なのは曲率特異点と円錐特異点である。また、特異点が事象の地平面に含まれているかどうかで分類することが出来る。 一般相対性理論の解または他の重力理論(超重力と呼ばれることもある)はしばしば計量が無限大に発散するような点を結果として与えることがある。しかし、それらの多くの点は実は完全に正則である。さらに言えば、その無限はその点に対して不適切な座標系を用いた結果にすぎない。よってその点が特異点であるかどうか確認する必要がある。例として、回転していないブラックホールを表すシュヴァルツシルトの解を挙げる。ブラックホールから十分に離れた系の座標系で、事象の地平線での計量は無限大となってしまう。しかしながら、事象の地平線上の時空は正則である。正則性は他の座標系(クルスカル座標系 (Kruskal-Szekeres coordinates) ) ではその点の計量が滑らかであることから分かる。一方で、ブラックホールの中心は、同じように計量は無限大となる、解は特異性が存在することを示している。 回転していないブラックホールの特異点は一点に発生する。それは点の特異点と呼ばれる。回転しているブラックホールのカー解では、特異点はリング状に発生する。

    (Source: http://dbpedia.org/resource/Gravitational_singularity)