Magnetism

prefLabel
  • magnetism
definition
  • A class of physical phenomena associated with moving electricity, including the mutual mechanical forces among magnets and electric currents.
inScheme
broader
Abstract from DBPedia
    Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles give rise to a magnetic field, which acts on other currents and magnetic moments. Magnetism is one aspect of the combined phenomena of electromagnetism. The most familiar effects occur in ferromagnetic materials, which are strongly attracted by magnetic fields and can be magnetized to become permanent magnets, producing magnetic fields themselves. Demagnetizing a magnet is also possible. Only a few substances are ferromagnetic; the most common ones are iron, cobalt and nickel and their alloys. The rare-earth metals neodymium and samarium are less common examples. The prefix ferro- refers to iron, because permanent magnetism was first observed in lodestone, a form of natural iron ore called magnetite, Fe3O4. All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility. Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminium and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments, so in everyday life, these substances are often described as non-magnetic. The magnetic state (or magnetic phase) of a material depends on temperature, pressure, and the applied magnetic field. A material may exhibit more than one form of magnetism as these variables change. The strength of a magnetic field almost always decreases with distance, though the exact mathematical relationship between strength and distance varies. Different configurations of magnetic moments and electric currents can result in complicated magnetic fields. Only magnetic dipoles have been observed, although some theories predict the existence of magnetic monopoles.

    物理学において、磁性(じせい、英: magnetism)とは、物質が原子あるいは原子よりも小さいレベルで磁場に反応する性質であり、他の物質に対して引力や斥力を及ぼす性質の一つである。磁気(じき)とも言う。

    (Source: http://dbpedia.org/resource/Magnetism)

    Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles give rise to a magnetic field, which acts on other currents and magnetic moments. Magnetism is one aspect of the combined phenomena of electromagnetism. The most familiar effects occur in ferromagnetic materials, which are strongly attracted by magnetic fields and can be magnetized to become permanent magnets, producing magnetic fields themselves. Demagnetizing a magnet is also possible. Only a few substances are ferromagnetic; the most common ones are iron, cobalt and nickel and their alloys. The rare-earth metals neodymium and samarium are less common examples. The prefix ferro- refers to iron, because permanent magnetism was first observed in lodestone, a form of natural iron ore called magnetite, Fe3O4. All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility. Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminium and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments, so in everyday life, these substances are often described as non-magnetic. The magnetic state (or magnetic phase) of a material depends on temperature, pressure, and the applied magnetic field. A material may exhibit more than one form of magnetism as these variables change. The strength of a magnetic field almost always decreases with distance, though the exact mathematical relationship between strength and distance varies. Different configurations of magnetic moments and electric currents can result in complicated magnetic fields. Only magnetic dipoles have been observed, although some theories predict the existence of magnetic monopoles.

    磁性体(じせいたい)とは、一般には磁性を帯びることが可能な物質であり、専門的には反磁性体・常磁性体・強磁性体の3つに分けられる。このため、すべての物質が磁性体であるといえるが、通常は強磁性体のみを磁性体と呼ぶ。比較的簡単に磁極が消えたり反転してしまう磁性体は軟質磁性体と呼ばれ、そうでない磁性体は硬質磁性体と呼ばれる。 代表的な磁性体に酸化鉄・酸化クロム・コバルト・フェライト・非酸化金属磁性体(オキサイド)などがある。 固体状態のものは磁石として、電動機の界磁として使用される。硬質材料の円盤上に磁性粉を塗布あるいは蒸着したものがハードディスクドライブ(のプラッタ)に用いられる。柔軟な合成ゴムにまぜて板状にするとマグネットシートになり、液体にコロイド分散させると磁性流体となる。医療分野では強力な磁力を使ったMRIやごく微弱な磁力を利用するSQUIDの形で実用化されている。新しい情報記憶素子のMRAMなどを含むスピントロニクスと呼ばれる科学研究分野が注目されている。

    (Source: http://dbpedia.org/resource/Magnetism)