Carbon dioxide

prefLabel
  • Carbon Dioxide
definition
  • One of the major greenhouse gases. Human-generated carbon dioxide is caused mainly by the burning of fossil fuels and deforestation. The chemical formula for carbon dioxide is CO2. Long-term measurements of CO2 in the atmosphere are conducted at Manua Loa, Hawaii and several international monitoring stations around the world. 
inScheme
broader
Abstract from DBPedia
    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    RETはの細胞外シグナル伝達分子を結合する受容体型チロシンキナーゼであり、ヒトではRET遺伝子にコードされる。RET遺伝子の機能喪失型変異はヒルシュスプルング病の発症と関係しており、機能獲得型変異は、多発性内分泌腺腫症2A型と2B型を含む、さまざまなタイプのがんの発症と関係している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    trans-グルタコン酸 (trans-glutaconic acid) は、化学式がHO2CCH=CHCH2CO2Hの有機化合物である。無色の固体で、対応する飽和化合物はグルタル酸である。エステルのときはグルタコナートと呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    meta-クレゾール、または3-メチルフェノールは、化学式がCH3C6H4(OH)で表される有機化合物。無色透明で粘性のある液体で、様々な化合物の原料となる。フェノールの誘導体であり、異性体にとがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カプリル酸(カプリルさん、caprylic acid)は、炭素数8の直鎖状脂肪酸で、IUPAC系統名はオクタン酸 (octanoic acid) である。天然にはココナッツや母乳などに含まれる。常温常圧においては、弱い不快な腐敗臭を持つ油状の液体である。なお、水にはほとんど溶けない。 工業的には香料として用いられるエステルの合成や染料の製造に利用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トランスサイレチンまたはトランスチレチン(英: transthyretin、略称: TTR)は、甲状腺ホルモンサイロキシン(T4)とレチノールを肝臓へ運搬する、血清または脳脊髄液中の運搬体タンパク質である。トランスサイレチンという名称は、その機能に由来する(transports thyroxine and retinol)。トランスサイレチンは肝臓から血中へ分泌され、脈絡叢から脳脊髄液へ分泌される。 TTRは以前はプレアルブミン(prealbumin、thyroxine-binding prealbumin、略称: TBPA)と呼ばれていた。これはTTRが電気泳動ゲル中でアルブミンよりも速く泳動されるためである。 トランスサイレチンは、に位置するTTR遺伝子によってコードされる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シクロペンタノール(cyclopentanol)は環状アルコールの一つ。 脱水させるとシクロペンテンと水を生じる。 消防法に定める第4類危険物 第2石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ルテオリン(Luteolin)は、フラボンの1つである。他のフラボノイドと同様に、黄色の結晶状になる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    タクロリムス (tacrolimus) は、23員環マクロライド・マクロラクタム構造を持つ免疫抑制剤の一種で、臓器移植または骨髄移植を行った患者の拒絶反応を抑制する薬剤である。またアトピー性皮膚炎に対する塗布剤、関節リウマチ治療薬としても用いられる。いずれもハイリスク薬である。類似の薬剤としてはシクロスポリン等が知られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プレグナンX受容体(プレグナンXじゅようたい、英: pregnane X receptor、略称: PXR)は、ヒトではNR1I2遺伝子によってコードされるタンパク質である。SXR(steroid and xenobiotic sensing nuclear receptor)、NR1I2(nuclear receptor subfamily 1, group I, member 2)の名称でも知られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エイコサン(Icosane、別名イコサン、アイコサン 英:Eicosane)は、炭素数が20のアルカン(飽和炭化水素)に分類される有機化合物である。n-エイコサンの場合、構造式は CH3(CH2)18CH3。異性体の数は366319。n-エイコサンは、ジデシルとも呼ばれる。 エイコサンは、引火点が高くて燃料には不適であり、石油化学工業的にはほとんど用途がない。なお引火点は186.5℃である。n-エイコサンは蝋燭に含まれる成分で最も炭素鎖の短い化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジヒドロ葉酸レダクターゼ(dihydrofolate reductase、DHFR)は、NADPHを電子供与体としてジヒドロ葉酸をテトラヒドロ葉酸に還元する酵素である。ヒトではDHFR遺伝子にコードされている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ダサチニブ(dasatinib)は、BCR-ABLをはじめとした複数のチロシンキナーゼを標的とした、分子標的治療薬であるチロシンキナーゼ阻害薬(Tyrosine-Kinase Inhibitor:TKI)としてブリストル・マイヤーズ スクイブ社により開発された抗悪性腫瘍剤(抗がん剤)である。投与は水和物で行われる。慢性骨髄性白血病 (CML)、および既存の治療に抵抗性または不耐容のフィラデルフィア染色体陽性急性リンパ性白血病 (Ph+ALL) の治療に用いられる。製造・販売元はブリストル・マイヤーズで、大塚製薬がプロモーション提携している。商品名はスプリセル (Sprycel) 。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジチオエリトリトール (dithioerythritol, DTE) とは、四炭糖エリトロースの硫黄誘導体のひとつ。エリトリトールの両端のヒドロキシ基がチオール基に変わったもので、メソ体となっている。ジチオトレイトール (DTT) のエピマーにあたる。分子式は C4H10O2S2。 DTT と同様に、DTE は優れた還元剤である。DTE の標準還元電位は DTT ほど負側ではない、すなわち還元力は DTT に及ばない。これはおそらく酸化を受けて生じる環状のジスルフィドについて、ヒドロキシ基どうしに立体反発があるためと考えられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    パロモマイシン(Paromomycin)はアメーバ赤痢、ジアルジア症、リーシュマニア症、サナダムシ感染症などいくつかの寄生虫感染症の治療に用いられる剤である。妊娠中のアメーバ赤痢やジアルジア症の一次治療に使用される。それ以外の場合は一般的に二次治療に用いられる。投与法は経口、皮膚への塗布、筋肉注射である。 経口薬による主な副作用は、食欲不振、嘔吐、腹痛、下痢などがあげられる。塗布薬による副作用は、ゆみ、赤み、水ぶくれなどがあげられる。注射薬による副作用は、発熱、肝臓病、難聴があげられる。授乳中のヒトへの投与は安全とされる。パロモマイシンはアミノグリコシド系抗生物質に属する薬剤であり、細菌のタンパク質合成を阻止することにより微生物を死滅する。 パロモマイシンは1950年代にから発見され、1960年に医薬品として使われるようになった。世界保健機関の必須医薬品リストに掲載されており、最も効果的で安全な医療制度に必要とされる医薬品である。パロモマイシンは後発医薬品として入手できる。 2007年時点のインドでの注射型による一貫の治療にかかる費用は£4.19~£8.38ポンドである。2015年時点の米国での一般的な一貫の治療にかかる費用は$200米ドルである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセトアミド (acetamide) とは有機化合物の一種で、酢酸とアンモニアが脱水縮合した構造を持つアミドである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リファブチン(Rifabutin, Rfb)は結核の治療に用いられる 抗生物質であり、マイコバクテリウム・アビウム・コンプレックス(Mycobacterium avium complex、MAC)症の予防と治療にも用いられる。一般的にリファンピシンが許容できないを服用しているHIV/エイズ患者に用いられる。活性結核にはその他の抗酸菌症治療薬と共に使用される。多剤耐性結核に曝露した場合の潜在的結核に対しては単剤で使用される。 主な副作用は腹痛、吐き気、発疹、頭痛、好中球減少症である。その他の副作用は筋肉痛やぶどう膜炎である。妊娠中の患者への悪影響は報告されていないものの調査もされていない。リファブチンは(Rifamycin)に属する医薬品である。作用機序は不明確である。 リファブチンは1992年にアメリカで医薬品として承認された。日本では2008年7月に承認された。世界保健機関の必須医薬品リストに掲載されている最も効果的で安全な医療制度に必要とされる医薬品である。開発途上国での卸値は1か月分で約$30米ドルである。米国での1か月の治療のかかる薬の値段は$200米ドル以上である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセトヒドロキサム酸(アセトヒドロキサムさん、またはN-ヒドロキシアセトアミド、英: Acetohydroxamic acid、AHAとも略記される)は、細菌や植物のウレアーゼに対する強力かつ不可逆的な酵素阻害剤であり、尿路感染症の治療に用いられる。分子構造は尿素に類似するが、ウレアーゼによる加水分解を受けない。物理的な性質として、融点は92℃。常温では白色ないしわずかに薄い黄色の結晶又は粉末である。 米国では1983年に「ストルバイト結石」の予防薬として希少疾病医薬品に指定された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ラウリン酸(ラウリンさん、英語: lauric acid)は炭素数12の飽和脂肪酸である。IUPAC系統名は ドデカン酸 (dodecanoic acid) である。ココナッツオイルやヤシ油に含まれる主な酸で、抗菌活性を持つと考えられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シプロフロキサシン (英語: ciprofloxacin、略称:CPFX) とは、ニューキノロン系の抗生物質のひとつ。バイエルよりシプロキサン、シプロの商品名で販売されているほか、後発医薬品も存在する。フッ素を持ち、フルオロキノロン薬に分類される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アルデヒドデヒドロゲナーゼ2 (2型アルデヒド脱水素酵素、アルデヒド脱水素酵素2、英語: aldehyde dehydrogenase 2; ALDH2)は上に存在する遺伝子、またその遺伝子にコードされているタンパク質である。ヒトにおいて19遺伝子存在するアルデヒドデヒドロゲナーゼ遺伝子の1つであり、コードしているALDH2タンパク質はヒトの肝臓を中心に様々な組織、細胞においてエタノールの代謝産物であるアセトアルデヒドを含む反応性アルデヒドの酸化および無毒化に重要な働きをしている酵素である。 ALDH2遺伝子の主な遺伝子多型として正常型のALDH2*1と不活性型のALDH2*2が知られている。モンゴロイド以外の人種のほとんどは正常型アリルのみを持つが、モンゴロイドの約50%は変異型アリルを持っていることが知られており、不活性型ALDH2*2がいわゆる「お酒に弱い体質」の原因の1つとされている。また、毒性化学物質の解毒能に大きく関わっていること、基質が日常生活にありふれて存在することからALDH2遺伝子多型は衛生学を含めた医学分野全体において重要な多型であると考えられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミフェプリストン(英語: mifepristone、別名:RU-486)は、妊娠中に中絶を引き起こすために、通常ミソプロストールと組み合わせて使用される薬である。この薬の組み合わせは、妊娠初期63日では97%有効である。妊娠中期にも効果がある。効果は、使用後2週間で確認する必要がある。経口で摂取する。一般的な副作用には、腹痛、疲労感、膣からの出血などがある。深刻な副作用には、膣からの大量の出血、細菌感染、妊娠が中断しなかった場合の先天性欠損症などがある。 ミフェプリストンは、(プロゲストーゲンの抑制剤)である。抗プロゲストーゲンは、プロゲステロンの効果をブロックし、子宮頸部を開きやすくし、ミソプロストールに晒されたときに子宮の収縮を促進することで機能する仕組みである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2-イソプロピル-3-メトキシピラジン(英: 2-Isopropyl-3-methoxypyrazine)は、化学式C8H12N2Oで表されるピラジンの誘導体の一種である。IPMPとも略記される。2-イソブチル-3-メトキシピラジン同様、嗅覚閾値0.002ppbと非常に強力な匂いを持つ。 消防法に定める第4類危険物 第2石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-ニトロアニリン、または p-ニトロアニリン(パラニトロアニリン) は、有機化合物のひとつで、ベンゼンのパラ位の水素がアミノ基とニトロ基が置き換わった構造を持つ。色素や医薬品合成の中間体、酸化防止剤、ガソリンのガム状化防止剤、家禽の医薬品、腐食防止剤としての用途がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセトアセチルCoA(アセトアセチルコエー、アセトアセチルコエンザイムエー)は、メバロン酸経路においてHMG-CoAの前駆物質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2,4,6-トリブロモフェノール(2,4,6-Tribromophenol, TBP)は、フェノールの臭素化誘導体である。殺菌剤、木材保存剤、難燃剤生成の中間体として用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    N-アセチルグルコサミン(N-アセチル-D-グルコサミン、GlcNAc、NAG)は、グルコースの2位ヒドロキシル基がアセチルアミノ基に置換された単糖である。化学的にはグルコサミンの2位アミノ基をアセチル化することで容易に調製できる。いくつかの生化学的機構にとって重要な物質である。 GlcNAcは細菌の細胞壁の生体高分子の一部を構成している。そこではGlcNAcとN-アセチルムラミン酸 (MurNAc) が交互ユニットを形成しており、MurNAcの乳酸残基にテトラペプチドが結合している。この層をなしている構造はペプチドグリカンと呼ばれている。 GlcNAcは、昆虫、甲殻類、線虫など脱皮動物の外被の基質を構成しているキチン質のモノマーでもある。また、GlcNAcは疼痛の経路において非定型的な神経伝達物質として作用するとも考えられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ガラクトース(galactose)はアルドヘキソースに分類される単糖の一種であり、Galと略記されることがある。乳製品や甜菜、ガム、および粘液で見出される他、ヒトの体内でも合成され各組織で糖脂質や糖タンパク質の一部を形成する。 エネルギーとなる食物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    N-メチル-2-ピロリドン (N-methylpyrrolidone、NMP) はラクタム構造を含む 5員環の構造を持つ有機化合物で、極性溶媒のひとつである。別名は N-メチルピロリドン、N-メチルピロリジン-2-オン、1-メチル-2-ピロリドン、N-メチル-2-ピロリジノン (N-methylpyrrolidinone)、M-Pyrol などである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エリスリトール(Erythritol)とは、化合物および糖アルコール(Sugar Alcohol)の一種である。食品添加物や砂糖の代わりに使われる。トウモロコシを原料に、酵素を用いて発酵させて製造する。化学式は、C4H10O4, or HO(CH2)(CHOH)2(CH2)OH で、立体異性体(Stereoisomer)の一つである。 ショ糖(砂糖の主成分であるスクロース, Sucrose)の60~70%の甘みを持ち、砂糖と違ってカロリーはほとんど無く、血糖値には影響を与えず、虫歯の原因になることも無い。また、インスリン(Insulin)の分泌も刺激しない。 「エリトリトール」とも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセトン (acetone) は有機溶媒として広く用いられる有機化合物で、もっとも単純な構造のケトンである。IUPAC命名法では プロパン-2-オン (propan-2-one) あるいは単にプロパノン。両親媒性の無色の液体で、水、アルコール類、クロロホルム、エーテル類、ほとんどの油脂をよく溶かす。蒸気圧が20 ℃において24.7 kPaと高いことから、常温で高い揮発性を有し、強い引火性がある。ジメチルケトンとも表記される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スペルミン (spermine) は、化学式 C10H26N4 で表されるポリアミンの一種。IUPAC命名法では N,N'-ビス(3-アミノプロピル)ブタン-1,4-ジアミン。融点 26–30 ℃、沸点 150 ℃ (5 mmHg) の固体。 1678年、アントニ・ファン・レーウェンフックにより精液中からリン酸塩として発見され、1888年、アルベルト・ラーデンブルクにより精液 (sperm) から命名された。 体内ではオルニチンなどから生合成されると考えられている。細胞の新陳代謝に関わるDNAと相互作用し、その遺伝情報の読み出しなどに密接に関わる重要な化合物でもある。DNAのらせん構造を安定化させる作用が有ると考えられており、核タンパク質の精製時などにも利用される。 また、スペルミンは精液に多く含まれ、その臭いの元となる化合物でもあるが、実際には精液の臭いはスペルミンの分解物によるものと考えられている。同様の化合物にはスペルミジンがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キサンチン (xanthine) はプリン塩基の一種で、ほとんどの体組織や体液に見られる有機化合物である。 キサンチンは生体内でプリン化合物が分解したときに生じ、キサンチンデヒドロゲナーゼ(キサンチンオキシダーゼ)の作用により尿酸へと変えられる。遺伝子疾患の一種のでは、このキサンチンオキシダーゼが不足してキサンチンから尿酸への変換が滞ってしまう。 有機合成では、グアニンの希硫酸溶液に亜硝酸ナトリウムを作用させるとキサンチンが得られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アトルバスタチン(Atorvastatin)は、リピトール(Lipitor)などの商品名で販売されている高リスクの心血管疾患の予防と異常な脂質レベルの治療に用いられるスタチン薬である。スタチンは、心血管疾患の予防の一次治療に用いられる医薬品である。投与法は経口である。 一般的な副作用には、関節痛、下痢、胸やけ、吐き気、筋肉痛などがあげられる。重度の副作用には、横紋筋融解症、肝臓障害、糖尿病などがあげられる。妊娠中の人への投与により胎児に害を及ぼす可能性がある。 すべてのスタチンと同様に、アトルバスタチンの作用機序は、肝臓でのコレステロールの生成するために働く酵素であるHMG-CoAレダクターゼを阻害することによって効果がある。 アトルバスタチンは1986年に特許認可され、1996年に米国で医薬品として承認された。日本では2000年3月に承認された。後発医薬品として入手でき、比較的に低価格で購入できる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クリンダマイシンは、リンコマイシン系の抗生物質。 商品名としては先発品にダラシン、ダラシンTゲル、ミドシンなどがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フルフェナム酸(Flufenamic acid)とは、フェナム酸系の非ステロイド性抗炎症薬の1種であり、2-{(3-トリフルオロメチルフェニル)-アミノ}-安息香酸のことである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コプロポルフィリノーゲンIII (coproporphyrinogen III) は、ポルフィリン代謝において、ウロポルフィリノーゲンIIIからウロポルフィリノーゲンデカルボキシラーゼによって合成され、コプロポルフィリノーゲンオキシダーゼによってプロトポルフィリノーゲンIXに変換される物質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デオキシアデノシン一リン酸(デオキシアデノシンいちリンさん、Deoxyadenosine monophosphate、dAMP)はアデノシン三リン酸の誘導体で、2'位のヒドロキシ基と2つのリン酸基が除かれている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    DPP-4(Dipeptidyl Peptidase-4、EC3.4.14.5)とは腸管ホルモンであるインクレチンの不活化を行う酵素(セリンプロテアーゼ)であり、細胞膜上をはじめ可溶性タンパク質として血液中にも存在している。インクレチンは食後の血糖値上昇に伴い腸上皮細胞から分泌され、中でもから分泌されるGIPとから分泌されるGLP-1が注目されている。これらは膵臓β細胞表面の受容体に結合してインスリン分泌促進およびグルカゴンの分泌抑制により血糖値降下作用を示す。DPP-4はT細胞などの免疫系細胞表面にもCD26として発現して分化マーカーとされている。アデノシンデアミナーゼ(ADA)と結合して細胞内情報伝達を調節する働きも有しているため、アデノシンデアミナーゼ結合タンパク質(ADABP)とも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カテコール (catechol) は、フェノール類の一種で、ベンゼン環上のオルト位に 2個のヒドロキシ基を有する有機化合物。ポリフェノールに含まれる構造として知られる。ピロカテコール (pyrocatechol) とも呼ばれる。位置異性体にレゾルシノール、ヒドロキノンがある。日本法の劇物。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウラン(独: Uran [uˈraːn], 新ラテン語: uranium 英語: [jʊˈreɪniəm])とは、原子番号92の元素。元素記号は U。ウラニウムともいう。アクチノイドに属する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    顆粒球マクロファージコロニー刺激因子(granulocyte-macrophage colony-stimulating factor;GM-CSF)またはコロニー刺激因子2(colony stimulating factor 2;CSF2)は、マクロファージ、T細胞、肥満細胞、ナチュラルキラー細胞、内皮細胞、線維芽細胞などから分泌される単量体の糖タンパク質であり、サイトカインとして機能する。 好中球の増殖と成熟を特異的に促進する顆粒球コロニー刺激因子とは異なり、GM-CSFはより多くの種類の細胞に作用する。 この様に主に細胞性免疫の主役である白血球(顆粒球、単球)の分化誘導作用をもつ為、免疫賦活や骨髄刺激に用いられる事もある。Th細胞等が産生している事が知られている。 天然由来GM-CSFの類縁物質医薬品はやと呼ばれている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コルチゾール(Cortisol)は、副腎皮質ホルモンである糖質コルチコイドの一種であり、医薬品としてヒドロコルチゾン (hydrocortisone) とも呼ばれる。炭水化物、脂肪、およびタンパク代謝を制御し、生体にとって必須のホルモンである。3種の糖質コルチコイドの中で最も生体内量が多く、糖質コルチコイド活性の約95%はこれによる。ストレスによっても分泌が亢進される。分泌される量によっては、血圧や血糖レベルを高め、免疫機能の低下や不妊をもたらす。 日本薬局方医薬品としてはヒドロコルチゾンの名称で収載される、ステロイド系抗炎症薬(SAID)の1つとして臨床使用される。ステロイド系抗炎症薬は炎症反応を強力に抑制し、炎症の全ての過程に作用する。急性炎症、慢性炎症、自己免疫疾患、アレルギー性疾患、ショック、痛風、急性白血病、などの治療に使用される。、クッシング症候群、胃潰瘍などの副作用が現れる場合もある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    18-クラウン-6(18-crown-6)は、分子式 [C2H4O]6、IUPAC名 1,4,7,10,13,16-ヘキサオキサシクロオクタデカンで表される有機化合物である。本化合物はクラウンエーテルの一種である。クラウンエーテル類は、いくつかの金属カチオンを中心の空洞に包接する。18-クラウン-6は特にカリウムカチオンに対して親和性を示す。クラウンエーテル類の開発の功績により、チャールズ・ペダーセンは1987年のノーベル化学賞を受賞した。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フーリンはタンパク質であり、ヒトではFURIN遺伝子にコードされている。その遺伝子は、として知られているがん遺伝子の上流にあるので、FUR(FES Upstream Region)と呼ばれ、そのためそのタンパク質はフーリン(furin)と名付けられた。フーリンはPACE(Paired basic Amino acid Cleaving Enzyme)としても知られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルコキナーゼ(英: glucokinase、EC 2.7.1.2)は、グルコースからグルコース-6-リン酸へのリン酸化を促進する酵素である。ヒトや他の脊椎動物の大部分では、グルコキナーゼは肝臓と膵臓の細胞で発現している。各器官においてグルコースのセンサーとして機能することで炭水化物の代謝調節に重要な役割を果たし、食事後や絶食時などのグルコースレベルの上昇や低下に応答して代謝や細胞機能の変化を開始させる。この酵素の遺伝子の変異は、一般的でない病態の糖尿病や低血糖症を引き起こす。 グルコキナーゼはヘキソキナーゼのアイソザイムであり、他の3つのヘキソキナーゼと相同性を示す。ヘキソキナーゼはグルコースからグルコース-6-リン酸へのリン酸化を媒介し、これはグリコーゲン合成と解糖系の双方の第一段階である。グルコキナーゼのグルコースに対する親和性は他のヘキソキナーゼよりも低い。他の3つのヘキソキナーゼはほとんどの組織や器官で解糖系やグリコーゲン合成に重要な役割を果たすのに対し、グルコキナーゼの活性はいくつかの細胞種に限られている。この低い親和性のため、生理的条件下におけるグルコキナーゼの活性はグルコース濃度によって大きく変動する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    副腎皮質刺激ホルモン放出ホルモン(ふくじんひしつしげき—ほうしゅつ—、corticotropin-releasing hormone, CRH)とは、ヒトのストレス反応に関するペプチドホルモンの一つ。Corticotropin-releasing factor (CRF, 副腎皮質刺激ホルモン放出因子)と呼ばれることもある。主な機能は、副腎皮質刺激ホルモン (ACTH) の分泌を促進させることである。ストレスに反応して視床下部(PVN)から分泌され、視床下部の底部にある正中隆起の血管網に放出され、下垂体門脈を通って下垂体前葉に到達する。 下垂体が視床下部によって調節されている可能性は、1950年代に Geoffrey W. Harris によって提唱されていた。視床下部から分離され、培養状態に置かれた前葉細胞は副腎皮質刺激能が低下するが、これは視床下部抽出物により回復する。ロジェ・ギルマンは、甲状腺刺激ホルモン放出ホルモンの抽出の前に、最初この因子の抽出を試みたが、1955年から7年もかけて数十万頭にも及ぶ家畜の脳を用いても果たせなかった。1981年になってWylie W. Valeらがヒツジの視床下部から単離して構造を決定した。ヒトおよびラットのCRHはアミノ酸配列が同じで、いずれも41アミノ酸残基から成り、C末端はアミド構造であることが知られている。 CRHの産生にはアルツハイマー病や大うつ病との関連が観察されており、に起因する視床下部コルチコトロピン欠損症は、低血糖症など複数の致命的な代謝的影響を及ぼしうる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スルファニルアミド(SulfanilamideまたはSulphanilamide)は、スルホンアミド系抗生物質の1つである。化学的には、パラ位にスルホンアミド基を有するアニリン誘導体である。粉末のスルファニルアミドは、第二次世界大戦中に連合国側で感染予防に用いられ、それ以前と比較して劇的に死亡率を低下させた。現代では戦場では他の抗生物質に取って代わられているが、膣真菌感染症には今でも用いられる。 “スルファニルアミド”という語は、分子中に 4-アミノベンゼンスルホンアミド 構造を有することを表現するために今でも用いられている。例) * フロセミド ― ループ利尿薬の1つ。 * スルファジアジン ― 抗生物質の1つ。 * スルファメトキサゾール ― 抗生物質の1つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キニジン(英: Quinidine)は、キナ(Cinchona )属の樹皮から産生されるアルカロイドであり、抗不整脈薬の一つである。抗不整脈薬の分類であるVaughan Williams分類ではIa群であり、ナトリウムイオンチャネルを抑制することにより活動電位の最大立ち上がり速度を低下させ、伝導速度を遅らせる作用を持つ。また、カリウムイオンチャネル抑制作用、カルシウムイオンチャネル遮断作用も持つ。キニーネの鏡像異性体(エナンチオマー)に相当する。キニーネが左旋性、キニジンが右旋性である。 ヒト以外では、小動物やウマの心室性不整脈、急性心房細動などの治療に用いられる。ネコでは経口投与は原則として行わない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カテプシンK(略称CTSK)は 、CTSK遺伝子によってエンコードされているシステインプロテアーゼ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウアバイン(英: ouabain)は、強心配糖体のひとつ。ソマリ族が毒矢の毒の原料として用いていたキョウチクトウ科の(Strophanthus)の種子に含まれる。名称はソマリ語で「矢毒」を意味する"waabaayo"のフランス語表記"ouabaïo"による。別名は G-ストロファンチン(g-strophanthin)、CAS登録番号 は [630-60-4]。 ウアバインのアグリコン(非糖部)はウアバゲニン(ouabagenin、またはg-straphanthidin)。 細胞膜に存在するNa+/K+-ATPアーゼを阻害することにより心筋細胞内Ca2+濃度を上昇させ、収縮力を増大させる。 医学実験においてNa+/K+-ATPアーゼのブロックに用いるほか、ドイツとフランスでは強心剤として用いる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホスカルネット(Foscarnet)とは、抗ウイルス薬の一つ。ギ酸にリン酸が置換した構造を持つ。サイトメガロウイルス(CMV)感染症の治療に用いられる。商品名はホスカビル、ノーベルファーマ製造販売。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メラトニン(英: Melatonin)は、動物、植物、微生物に存在する内因性ホルモンであり、また化学的にN-アセチル-5-メトキシトリプタミン (N-acetyl-5-methoxytryptamine) として知られる。日本では、これまで公に小児に対して使用できる睡眠薬がなかったが、2020年に商品名メラトベルで処方箋医薬品として「小児期の神経発達症に伴う入眠困難の改善」の適応で初めて承認された。動物では、メラトニンの血中濃度は1日の周期で変化しており、それぞれの生物学的な機能における概日リズムによる同調を行っている。メラトニンによる多くの生物学的な効果は、の活性を通して生成され、他にも広範囲にわたる強力な抗酸化物質としての役割によって、特に核DNAやミトコンドリアDNAを保護する。 メラトニンはアメリカ食品医薬品局(FDA)によってサプリメントに分類されており、医薬品ではない。メラトニンの徐放製剤は、2007年に欧州医薬品庁によって55歳以上の人々に対して処方箋医薬品としてCircadinが承認されたが、小さな効果しか示していない。メラトニン徐放製剤が症状を呈するオーストラリアでは2009年に承認された。ヒトが長期間にわたり外部から補給することによる完全な影響はまだ判明していない。また、2018年に欧州医薬品庁によって小児用メラトニン徐放製剤Slenytoが「小児及び青年期の自閉スペクトラム症及びスミス・マギネス症候群を伴う不眠症」の適応で承認された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェブキソスタット(Febuxostat、開発コードTMX-67)は、非プリン型のキサンチンオキシダーゼ阻害薬である。痛風、高尿酸血症、またはがん化学療法に伴う高尿酸血症の治療薬として帝人ファーマが開発した。欧州、米国などに続いて、日本でもフェブリクとして2011年1月に承認された。尿酸産生を抑制し、痛風発作を予防する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピロロキノリンキノン (Pyrroloquinoline quinone, PQQ) は、1964年にJ.G. Haugeらにより、細菌のに含まれるニコチンアミドとフラビンに次ぐ3番目のとして見出された。 一方、AnthonyとZatmanも、アルコール脱水素酵素に未知の酸化還元補酵素があることを見出し、これをMetoxatinと名づけた。 1979年に、Salisburyら、およびDuineらのグループが、メチロトローフ(メタノール資化菌)のからこの補酵素を抽出し、その分子構造を同定した。Adachiらのグループは、酢酸菌の脱水素酵素にもPQQが含まれることを見出した。これらのPQQを含む酵素は、キノプロテインと呼ばれ、その一つであるグルコース脱水素酵素は、グルコースセンサーに用いられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インターロイキン-18(英: interleukin-18、略称: IL-18)は、ヒトではIL18遺伝子にコードされるタンパク質である。インターフェロンγ誘導因子(interferon-gamma inducing factor)とも呼ばれる。造血系細胞と非造血系細胞を含む多くの細胞種が、IL-18産生能力を持つ。IL-18は1989年にマウス脾臓細胞において、インターフェロンγ(IFN-γ)の産生を誘導する因子として最初に記載された。もともと、IL-18は肝臓に位置するマクロファージであるクッパー細胞で産生されることが知られていたが、細胞、ケラチノサイト、内皮細胞などの非造血系細胞でも恒常的に発現している。IL-18は自然免疫と獲得免疫の双方を調節し、その調節異常は自己免疫疾患や炎症疾患を引き起こす場合がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アジピン酸(アジピンさん、adipic acid)は、ジカルボン酸の一種。IUPAC命名法ではヘキサン二酸 (hexanedioic acid) と表される無臭の無色結晶性粉末である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シトラコン酸(シトラコンさん、citraconic acid)は、クエン酸の加熱分解で得られるカルボン酸の1種である。メサコン酸のシス異性体である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アスパルテーム(aspartame、アスパルテイム、略称 APM ; 発音 [ˈæspərteɪm] または [əˈspɑːrteɪm])とは、人工甘味料の1つである。ヒトにはスクロースの100~200倍の甘味に感じられる。これに対して、アスパルテームの生理的熱量は、スクロースとほぼ同じ、約4 (kcal/g)であり、ノンカロリーではない。CAS登録番号は[22839-47-0]。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シクロオキシゲナーゼ2(英: cyclooxygenase-2、略称: COX-2)またはプロスタグランジンエンドペルオキシドシンターゼ2(英: prostaglandin-endoperoxide synthase 2、略称: PTGS2)は、ヒトではPTGS2遺伝子にコードされる酵素である。COX-2はヒトに2種類存在するシクロオキシゲナーゼのうちの1つである。COX-2はアラキドン酸からへの変換に関与しており、炎症時に発現する。プロスタグランジンH2はプロスタサイクリンの重要な前駆体である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メロペネム(meropenem)は、さまざまな細菌感染症の治療に使用される広域抗生物質である。これらの一部には、髄膜炎 , 腹腔内感染, 肺炎, 敗血症、および炭疽菌 感染が含まれる。 この薬剤は静脈への注射によって投与される。製品名はメロペン(大日本住友製薬製造販売)。 一般的な副作用には、吐き気、下痢、便秘、頭痛、発疹、注射部位の痛みなどがある。重篤な副作用には、クロストリジウムディフィシル感染 , 痙攣, アナフィラキシーなどのアレルギー反応が含まれる。他のにアレルギーがある人は、メロペネムにアレルギーがある可能性が高くなる。妊娠中の使用は安全と思われる。カルバペネム系の薬である。メロペネムは通常、細胞壁を作る能力をブロックすることにより、細菌の死をもたらす。β-ラクタマーゼ産生菌による分解に対してより耐性がある。 メロペネムは1983年に特許を取得した。 1996年に米国で医療用途として承認された。 世界保健機関の必須医薬品リストに載っている。これは健康システムに必要な最も効果的で安全な医薬品である。 発展途上国の卸売コストは、2015年時点で1グラムのバイアルあたり3.44〜20.58 USDである。 英国では、この金額により2015年にNHSの費用は約16ポンドになる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プテロスチルベン(Pterostilbene、/[ˌtɛrəˈstɪlbiːn]/、トランス-3,5-ジメトキシ-4-ヒドロキシスチルベン)は、スチルベノイドの1つでレスベラトロールの類縁体である。植物においては、ファイトアレキシンとして自己防衛のため分泌される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イソキノリン (isoquinoline) は、ベンゼン環とピリジン環が縮合した構造を持つ複素環式芳香族化合物の一種である。キノリンの構造異性体にあたり、その構造を、2-アザナフタレン、2-ベンズアジン と表すこともできる。ピリジン環の 3,4位の結合部位にベンゼン環が縮合していることから ベンゾ[c]ピリジン とも表される。無色で吸湿性の油状物質で、強い臭いを呈する。広義では、イソキノリン骨格を持つ各種誘導体の化合物群を示す。イソキノリンは天然に存在するパパベリンやモルヒネなどのアルカロイドに含まれる。生体内で、それらのイソキノリン環はチロシンから誘導されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルコース-6-リン酸デヒドロゲナーゼ(Glucose-6-phosphate dehydrogenase ,G6PD)は、NADPH濃度を維持することにより細胞へ還元エネルギーを供給するペントースリン酸経路に関与する細胞質酵素の一つ。このNADPHは細胞内の主要な抗酸化成分であるグルタチオンの濃度を維持し、細胞を酸化的ダメージから保護している。また、NADPHは組織では肝臓や乳腺、脂肪組織および副腎における、脂肪酸やイソプレノイドの生合成にも使われている。この酵素の遺伝的欠損による非免疫性溶血性貧血(グルコース6リン酸脱水素酵素欠損症)はヒトにおいて顕著である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エタノールアミン(英語: ethanolamine)、2-アミノエタノール(2-aminoethanol)ないしはモノエタノールアミン(monoethanolamine, 略:MEA)は、一級アミン(分子構造上ではアミノ基)と一級アルコール(同様にヒドロキシ基)の両方を有する有機化合物である。他のアミン同様にモノエタノールアミンも弱い塩基として作用する。エタノールアミンは毒性、可燃性、腐食性を持つ無色、粘調な弱いアンモニア臭がする液体である。エタノールアミンの屈折率は1.4539である。消防法に定める第4類危険物 第3石油類に該当する。 一般にエタノールアミンはジエタノールアミン(DEA)やトリエタノールアミン(TEA)と区別する場合は、モノエタノールアミンないしはMEAと呼ばれる。モノエタノールアミンは酸化エチレンとアンモニアを反応させて製造される。さらに酸化エチレンが反応するとDEAやTEAが得られる。エタノールアミンはリン脂質の二番目に豊富な頭部構造であり、それらは生体膜中で見いだされる。 エタノールアミンは抗ヒスタミン薬の共通構造において、ジフェニルメタンに連結しているエチルアミン部分として見いだされる。例えばジフェンヒドラミン(ドリエル)、(Percogesic)、ドキシラミン(Unisom、睡眠導入剤)等の部分構造である。これらは第一世代の抗ヒスタミン薬であり、今日でもアレルギー疾患に有効である。しかし、スイッチOTCや処方医薬品のロラタジン (クラリチン)やフェキソフェナジン(アレグラ)など新しい第二世代抗ヒスタミン薬も登場している。第一世代は、エタノールアミンにより血液脳関門を通過するので、バルビツール酸系を凌駕する鎮静作用を持つ(新しい抗ヒスタミン薬はそうではない)。この理由のため、エタノールアミン構造を持つ抗ヒスタミン薬の強い眠気の作用を避けることができる第二世代抗ヒスタミン薬がしばしば処方される。逆に、この鎮静作用を持つため第一世代の抗ヒスタミン薬は抗アレルギー薬として以外にも、睡眠導入剤として薬局薬店で販売されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    レニウム(英: rhenium)は原子番号75の元素。元素記号は Re。マンガン族元素の一つで、銀白色の金属。遷移金属(第3遷移金属)で、レアメタルの一種。地殻中においても、宇宙空間中においても最も希少な金属である。性質は一つ上のテクネチウムに酷似している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウリジン (Uridine) は、ピリミジンヌクレオシドの1つでウラシルがリボース環にβ-N1-グリコシド結合で接続した構造をもつ物質(詳細はヌクレオチドを参照)である。 RNAの構成成分の1つである。一方、ウラシルがデオキシリボース環に接合しているものは、デオキシウリジンである。 吸収極大波長はpH2で262nmであり、希酸で加水分解されにくい性質を持ち、濃酸で加水分解するとウラシルとフルフラールになる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセナフトキノン(acenaphthoquinone)は、アセナフテンのキノン誘導体である。水には溶けず、アルコールには溶ける。染料、薬品、殺虫剤の製造における合成中間体として使われる。刺激性がある。発ガン性についてはまだ十分な調査がなされていない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピネン(pinene)は、化学式がC10H16で表される有機化合物で、モノテルペンの1種。名称はマツ (pine) に由来し、その名の通り松脂や松精油の主成分であるほか、多くの針葉樹に含まれ特有の香りのもととなる。香料や医薬品の原料となる。 ピネンは六員環と四員環からなる炭化水素で、二重結合の位置が異なるα-ピネンとβ-ピネンの2つの構造異性体が存在する。さらにそれぞれが2種の鏡像異性体をもつことから、ピネンには合計4種の異性体が存在する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミノキシジル(Minoxidil)とは血管拡張薬として開発された成分。後に発毛効果があるとされ発毛剤に転用され、日本以外ではRogaine(ロゲイン)の商品名で売られている。 日本では一般用医薬品として各社から市販されている。優れた発毛効果をもたらすことから「飲む育毛剤」とも呼ばれている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ビシン (Bicine) は、緩衝剤として使われる有機化合物である。 グッドバッファーのひとつであり、20℃での pKa は 8.35 である。グリシンとエチレンオキシドを反応させ、生じたラクトンを加水分解することによって得られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リボース-5-リン酸(リボース-5-リンさん、英: Ribose 5-phosphate, R5P)は、ペントースリン酸経路で作られる中間体の一つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アスパラギン(英: asparagine)は、アミノ酸のひとつで、2-アミノ-3-カルバモイルプロピオン酸のこと。略号は N あるいは Asn。アスパラガスからはじめて単離されたことによりこの名がついた。 中性極性側鎖アミノ酸に分類される。蛋白質構成アミノ酸のひとつで、非必須アミノ酸。グリコーゲン生産性を持つ。コドンはAAUまたはAACである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イミノクタジン(英: iminoctadine)は、グアニジン系殺菌剤の一種である。アルベシル酸塩及び酢酸塩の製剤が農薬として使用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    過酢酸(かさくさん、peracetic acid)は、過酸、過カルボン酸のひとつ。PAA と略される。鼻を突く酢酸臭がある液体で、水に易溶。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2,2,2-トリフルオロエタノール(英: 2,2,2-Trifluoroethanol)は化学式CF3CH2OH で表される有機化合物である。TFEと略されることがある。水に可溶の無色透明な液体であり、エタノールと類似した臭気を有する。が電子求引性であるため、エタノールと比較すると酸性度が強い。このためTHFやピリジンといった複素環式化合物と、水素結合による安定な錯体を形成する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ノルエチステロン(norethisterone)またはノルエチンドロン(norethindrone)は商標名のアイゲスチン(Aygestin)やプリモルトN(Primolu N)などで販売されており、経口避妊薬や閉経期のホルモン療法などの婦人科の治療に用いられる薬剤である。低用量と高容量の製剤があり、それらは単体またとの混合剤がある。投与法は経口投与である。 ノルエチステロンの副作用には生理不順、頭痛、吐き気、乳房の痛み、気分の変化、ニキビ、発毛の増進などがあげられる。ノルエチステロンはプロゲスチンまたはジェスタージェン有機化合物であり、プロゲステロン受容体のアゴニストであり、プロゲステロンのようにプロゲストーゲンを生物学的標的とする。若干のアンドロゲンとエストロゲンの作用があるが、ほとんどは多用量の場合であり、その他のホルモン作用はない。 ノルエチステロンがカール・ジェラッシらによって発見されたのは1951年であり、最初に開発されたプロゲスチンの1つである。最初に単体で医薬品として用いられたのは1957年であり、エストロゲンと混合の経口避妊薬として使われ始めたのは1963年である。しばしば第一世代プロゲスチンと呼ばれる。デソゲストレルと同様にプロゲストーゲンのみの経口避妊薬として唯一広く使われるプロゲスチンの避妊薬である。 ノルエチステロンは世界中で幅広く販売されている。後発医薬品として入手できる。 ノルエチステロンに加えて数種類のプロドラッグがあり、(norethisterone acetate, NETA)や(norethisterone enanthate, NETE)などがあり、似たような用途のために販売されている。NETAはノルエチステロンと同様に投与法は経口であるが、NETEの投与法は筋肉注射である。多数あるノルエチステロンの誘導体ののかでもレボノルゲストレルとデソゲストレルが開発され販売されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メタノール (methanol) とは、有機溶媒などとして用いられるアルコールの一種である。別名として、メチルアルコール (methyl alcohol)、木精 (wood spirit)、カルビノール (carbinol)、メチールとも呼ばれる。 一連のアルコールの中で、最も単純な分子構造を持つ。ホルマリンの原料、アルコールランプなどの燃料として広く使われる。燃料電池の水素の供給源としても注目されている。エタノールと違い、人体に有毒な化学物質で、代謝によりギ酸(蟻酸)を大量に生成し、失明や代謝性アシドーシスに至るため飲用不可である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピセオール(Piceol)は、オウシュウトウヒ(Picea abies)の針葉や菌根に見られるフェノール化合物である。ピセインは、ピセオールのグルコシドである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コハク酸(琥珀酸、コハクさん、succinic acid)は、構造式 HOOC–(CH2)2–COOH で表されるカルボン酸の一種。はじめコハクの乾留により見つかったためにこの名がついた。英名のsuccinic acidはラテン語のsuccinum(コハク)に由来する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インデン (indene) は、分子式がC9H8と表される二環性の炭化水素。可燃性。ベンゼンがシクロペンタジエン環と縮合した構造を持つ。純粋なインデンは無色だが、保管中に起こる重合や酸化により淡黄色を呈する。主な工業的用途として、熱可塑性を持つの原料となる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルタチオンジスルフィド(glutathione disulfide、GSSG)は、2分子のグルタチオンから誘導されるジスルフィドである。 生細胞において、グルタチオンジスルフィドは補酵素NADPHからの還元等価物によって2分子のグルタチオンへ還元される。この反応はグルタチオンレダクターゼ (EC 1.8.1.7) によって触媒される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サラゾスルファピリジン(Salazosulfapyridine、SASP)またはスルファサラジン(Sulfasalazine、SSZ)は1950年代に開発された抗リウマチ薬(DMARDs)である。サルファ剤に分類され、メサラジンとがアゾ結合している。日本ではアザルフィジンENとしてあゆみ製薬発売、ファイザー製造販売。 基本的な医療に必要とされるWHO必須医薬品モデル・リストに収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インターロイキン-7(英:Interleukin-7、IL-7)は生理活性物質の一つであり、1988年にB細胞の前駆細胞(pre-B細胞)の増殖を促進する造血性サイトカインとして発見された。IL-7は細胞膜上に存在するIL-7受容体(IL-7R)を介してその生理作用を発現する。1988年にはIL-7、1990年にはIL-7RのcDNAがそれぞれ単離されている。分子量は25kDaである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ボリコナゾール(Voriconazole)はアゾール系(系)抗真菌薬の一種で、重症または難治性の真菌感染症に用いる。日本では2005年に発売された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    LGD-2226は、研究中の選択的アンドロゲン受容体修飾薬(SARM)であり、筋力低下および骨粗鬆症の治療薬として開発されている 。 LGD-2226は、経口で作用する強力なアンドロゲン受容体の選択的アゴニストであり、筋肉および骨組織の両方に同化作用を示すが、テストステロンに比べて前立腺の重量および黄体形成ホルモンレベルへの影響はかなり少ないことが示されている。 選択的アンドロゲン受容体モジュレーターは、アスリートがトレーニングを支援し、肉体的スタミナとフィットネスを向上させるために使用されることもあり、潜在的にはアナボリックステロイドと同様の効果をもたらすが、副作用は大幅に少ない。このため、2008年1月以降、このクラスの医薬品がまだ臨床使用されていないにもかかわらず、世界アンチ・ドーピング機関によってSARMsはすでに禁止されており、LGD-2226を含むすべての既知のSARMsの血液検査が現在開発されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    3-ヒドロキシ安息香酸(3-hydroxybenzoic acid)は、モノヒドロキシ安息香酸の一つ。この物質はシュードモナス属によってから合成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フルコナゾールは、深在性真菌症に用いられるの抗真菌薬。日本では、ファイザーがジフルカンとして販売しているほか、いくつかの後発医薬品が販売されている。剤形には、カプセル剤、、がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1,2-ジクロロエタン(1,2-Dichloroethane, DCE)は、ハロゲン系炭化水素に属する有機化合物である。二塩化エチレン(ethylene dichloride, EDC)とも呼ばれる。主に塩化ビニルモノマー(クロロエチレン)の生産に用いられ、ポリ塩化ビニルの前駆体とされる。また他の有機化合物の合成においても有用な反応中間体として使われたり、溶媒として用いられたりもする。クロロホルム様の臭気を持つ無色の液体である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウベニメクス(INN: Ubenimex)またはベスタチン (bestatin) は、競合的、可逆的プロテアーゼ阻害剤である。アルギニルアミノペプチダーゼ、ロイコトリエンA4ヒドロラーゼ、、、を阻害する。急性骨髄性白血病やリンパ水腫の治療への利用が研究されている。Streptomyces abikoensisが産生する。ウベニメクスは、オキシトシン、バソプレッシン、エンケファリン、その他の様々なペプチドや化合物の酵素分解を阻害することが知られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    血管拡張因子刺激リン酸化タンパク質(Vasodilator-stimulated phosphoprotein)とは、ヒトのVASP遺伝子にコードされているタンパク質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    分子生物学において、CD4 (cluster of differentiation 4) とはいわゆるヘルパーT細胞、単球、マクロファージ、樹状細胞などの免疫系細胞が細胞表面に発現している糖タンパクで細胞表面抗原の1つである。1970年代後半に発見されたこの分子は、1984年にCD4と名付けられるまではleu-3、T4として知られていた。ヒトの場合、CD4遺伝子にコードされている。 CD4陽性T細胞はヒトの免疫系において必要不可欠な白血球である。しばしばCD4細胞、Th細胞、T4細胞と呼ばれることもある(以下CD4細胞)。この細胞の主要な役割はCD8陽性T細胞(いわゆるキラーT細胞、もしくは細胞傷害性T細胞、以下CD8細胞)などの他の免疫系細胞にシグナルを送ることであり、このことからCD4細胞はヘルパー細胞と呼ばれる。CD4細胞がシグナルを送ると、CD8細胞はそれを受けて感染細胞を破壊しこれを殺す。無治療のHIV-1感染患者や臓器移植前の免疫抑制状態のようにCD4細胞が枯渇すると、健常者では発現しない感染症の病原体に感染し易くなる(日和見感染)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2-ナフトール(en:2-Naphthol)は示性式C10H7OHを有する蛍光性有機化合物である。無色(または黄色)の結晶固体である。ナフタレンの水素を1個、ヒドロキシ基に置換した化合物で、フェノール類に分類される芳香族化合物である。また、そのヒドロキシ基はフェノールよりも反応性が高い。ヒドロキシ基の置換位置が異なる異性体、1-ナフトールが存在する。化学工業ではβ-ナフトールと呼ばれている。異性体はいずれも単純なアルコール、エーテル、クロロホルムに溶けやすい。2-ナフトールは毒物及び劇物取締法に定める劇物に該当する。2-ナフトールは、染料および他の化合物の製造のために広く使用される中間体である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イソフェルラ酸はヒドロキシケイ皮酸の誘導体の一つで、フェルラ酸の異性体である。ケイ皮酸の3位にヒドロキシ基、4位にメトキシ基を持つことから、3-ヒドロキシ-4-メトキシケイ皮酸とも呼ばれる。フェルラ酸は、3位と4位の配置が本物質とは逆になる。本物質はヘスペレチン酸の別名も持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヘキサデカン (hexadecane) は炭化水素の一種で、炭素が16連なった直鎖アルカン。分子式は C16H34。沸点287℃。融点18.2℃。異性体の数は10359。 かつてはセタン(cetane)と呼ばれていた。これは誘導体のセチルアルコールにちなむが、さらに遡るとセチルアルコールの原料であるクジラの学名ケートゥス(Cetus)に由来する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    バゼドキシフェン(bazedoxifene)は骨粗鬆症治療薬のひとつ。バゼドキシフェン酢酸塩 として用いられる。(がんの治療の可能性については多くの研究を保留中である) この薬剤は第三世代の選択的エストロゲン受容体モジュレーター (SERM)である。 2013年後半以来、 閉経後 骨粗鬆症の予防(治療ではないにおける合剤 Duaveeの一部として、バゼドキシフェンに対する米国FDAの承認を受けている。 乳がんと膵臓がんの治療の可能性についても研究されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    p21 / WAF1は、ヒト (6p21.2) に位置するCDKN1A遺伝子にコードされるタンパク質である。サイクリン依存性キナーゼ阻害因子1(cyclin-dependent kinase inhibitor 1)あるいはCDK相互作用タンパク質1 (CDK-interacting protein 1) としても知られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジミナゼン(英:diminazene)とは動物用医薬品で抗ピロプラズマ薬のひとつ。ジミナゼン類の代表的薬物。CAS登録番号は [536-71-0]。2個のアミジン構造と、1個のトリアゼン構造を持つ。作用機序は原虫の嫌気的解糖を阻害することによるとされる。獣医学領域においてウシのBabesia ovata、イヌのBabesia gibsoniに有効であるが、反復投与によりウシにおいては脂肪変性、イヌにおいてはや出血といった副作用が生じる。その他のジミナゼン類の化合物としてはなどがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    8-キノリノールは、キノリンの炭素8番の水素がヒドロキシル基に置換した有機化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジエチレングリコールモノメチルエーテル (Diethylene glycol monomethyl ether) とは有機化合物の一種である。ジエチレングリコールのヒドロキシ基が1個メチル化された化合物。 使用用途は氷結防止剤、印刷インキ、染料、粘度調整剤、樹脂溶剤、工業用中間原料など。 JP-5ジェット燃料の氷結防止剤として販売されている。 消防法に定める第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    7-ニトロインダゾール (7-Nitroindazole、7-NI) は、7位がニトロ化したインダゾール環を含む複素環式化合物の小分子である。ニトロインダゾールは、神経細胞組織に存在しアルギニンをシトルリンと一酸化窒素に変換する神経型一酸化窒素合成酵素 (nNOS) の選択的阻害剤である。一酸化窒素は細胞膜を透過して隣の細胞に拡散し細胞シグナル伝達を行うため、ニトロインダゾールは間接的にこのシグナリングを阻害することとなる。他の阻害剤には、より強いが特異性の低いや異なる部位に作用するがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デオキシアデノシン二リン酸(Deoxyadenosine diphosphate)は、である。一般的な核酸であるアデノシン三リン酸と関連があり、ヌクレオチドのペントースの2'炭素についた水酸基がなく、さらにATPよりもリン酸基が1つ少ない。 2'-デオキシアデノシン二リン酸は、dADPと略称される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インドメタシン(英: indometacin)とは非ステロイド性抗炎症薬の一つ。アラキドン酸カスケードにおけるシクロオキシゲナーゼ(COX)を阻害することによりプロスタグランジン類の生成を抑制することによって抗炎症作用を示す。また、抗炎症作用以外に鎮痛作用を持つ。 プロドラッグとしてインドメタシンファルネシル、アセメタシンがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カフェイン(英語: caffeine)は、アルカロイドの1種であり、プリン環を持ったキサンチンと類似した構造を持った有機化合物の1つとしても知られる。ヒトなどに対して興奮作用を持ち、世界で最も広く使われている精神刺激薬である。カフェインは、アデノシン受容体に拮抗することによって覚醒作用、解熱鎮痛作用、強心作用、利尿作用を示す。 フリードリープ・フェルディナント・ルンゲによりコーヒー(coffee)から単離されたため、カフェイン(ドイツ語: Coffein)と命名された。主に、コーヒー飲料、緑茶、ウーロン茶、紅茶、ココア、コーラ、エナジードリンクや栄養ドリンクなどの飲料、チョコレートなどにカフェインが含まれる。一方で、妊娠期や過敏体質によりカフェインレスコーヒー、麦茶などカフェインを含有しない飲料の需要もある。 医薬品では総合感冒薬や鎮痛薬などに用いられる。その際の副作用として不眠、めまいなどが含まれる。またカフェインの減量あるいは中止による禁断症状として、頭痛、集中欠如、疲労感、気分の落ち込みなど吐き気や筋肉痛が、およそ2日後をピークとして生じる場合がある。頭痛は1日平均235 mgの摂取で、2日目には52%が経験する。 カフェインは肝臓で発現している代謝酵素の1つであるCYP1A2で代謝されるため、この阻害作用のある薬と併用すると、血中濃度が高まり作用が強く出る薬物相互作用を引き起こし得る。一方、ニコチンにはCYP1A2の誘導作用があるため、習慣的な喫煙によってカフェインの作用は減弱する。なお、カフェインは肝臓ででも代謝される事が知られている。 また、ヒトでは加齢によって身体の水分量低下と相対的な脂肪の増加が発生するため、様々な薬物の分布容積が変化する事が知られており、カフェインの場合は分布容積が減少する。さらに、加齢によってCYP1A2は減少する傾向が有ると考えられている。したがって、高齢者ではカフェインの血中濃度が上昇し易く、作用が増強し易い。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エルゴステロール (ergosterol) は、分子式 C28H44O、分子量 396.65 のステロールの一種。骨格を持つ脂溶性物質である。カビなどの菌類においてラノステロールから生合成される。紫外線を受けてとなり、これを経てエルゴカルシフェロール(ビタミンD2)となる。 菌類の細胞膜を構成する物質であり、動物の細胞におけるコレステロールと同様な働きをする。菌類には存在するが動物には見られないという性質は抗真菌薬の開発に応用されている。トリパノソーマのような原生生物の細胞膜の流動化剤 (fluidizer) としても作用し、これは東アフリカでみられるアフリカ睡眠病に対して用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アラキドン酸-5-リポキシゲナーゼ (arachidonate 5-lipoxygenase) は、アラキドン酸代謝酵素の一つで、次の化学反応を触媒する酸化還元酵素である。 アラキドン酸 + O2 (5S,6S,7E,9E,11Z,14Z)-5,6-エポキシイコサ-7,9,11,14-テトラエン酸 + H2O 反応式の通り、この酵素の基質はアラキドン酸とO2、生成物は(5S,6S,7E,9E,11Z,14Z)-5,6-エポキシイコサ-7,9,11,14-テトラエン酸とH2Oである。 組織名はarachidonate:oxygen 5-oxidoreductaseで、別名にleukotriene-A4 synthase、δ5-lipoxygenase、5δ-lipoxygenase、arachidonic 5-lipoxygenase、arachidonic acid 5-lipoxygenase、C-5-lipoxygenase、LTA synthase、leukotriene A4 synthaseがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アドレナリン(adrenaline、英名)、エピネフリン(epinephrine、米名、IUPAC組織名:4-[1-ヒドロキシ-2-(メチルアミノ)エチル]ベンゼン-1,2-ジオール)は、副腎髄質より分泌されるホルモンであり、薬物である また、神経節や脳神経系における神経伝達物質でもある。分子式はC9H13NO3である。戦うか逃げるか反応において重要な役割を果たす。 ストレス反応の中心的役割を果たし、血中に放出されると心拍数や血圧を上げ、瞳孔を開きブドウ糖の血中濃度(血糖値)を上げる作用などがある。 「生体内で合成される生理活性物質」という捉え方と、「医薬品」という捉え方の違いから、生物学の教科書・論文では世界共通でアドレナリンと呼んでいるのに対して、医学においては世界共通でエピネフリンと呼ばれている。ただし、欧州薬局方では「アドレナリン」が採用されているほか、日本でも医薬品の正式名称を定める日本薬局方が2006年4月に改正され、一般名がエピネフリンからアドレナリンに変更されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チラミン (Tyramine; 4-hydroxy phenylethylamine, C8H11NO) は、生体内での作用によりチロシン(Tyr)から産生されるアミンで、フェネチルアミンの誘導体の1つである。チラミンは、モノアミン神経伝達物質(セロトニン、ノルアドレナリン、アドレナリン、ヒスタミン、ドーパミン、アセチルコリンなど)と構造が良く似ている。さまざまな食品に含有されており、高血圧発作の誘因となる化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    TATA結合タンパク質(ターターけつごうタンパクしつ、英: TATA-binding protein、TBP)とは、TATAボックスと呼ばれるDNA配列に特に結合する基本転写因子のことである。このDNA配列は一部の真核生物の遺伝子のプロモーター領域においての約25塩基対上流で見つかっている。TBPは、様々なTBPに関連した因子とともにRNAポリメラーゼII転写開始前複合体を作り上げる基本転写因子であるTFIIDを作り上げる。特有のDNA配列に結合する転写開始前複合体である数少ないタンパク質の1つとして、RNAポリメラーゼIIが遺伝子の転写開始位置に結合する助けとなる。しかしながら、ヒトのプロモーター領域の10-20%にしかTATAボックスが存在しないと考えられている。それゆえ、TBPはRNAポリメラーゼIIの位置決定のみに必要とされているのではないと考えられている。 TBPはDNAを80°折り曲げることで二本鎖DNAを解離することに関与している(多くのA-T間の結合はより容易にほどける)。TBPはβシートによる数少ない溝に結合するという点で、特異なタンパク質である。 TBPのもう1つの特異な特徴は、タンパク質のN末端における長いグルタミンの連続である。この領域がC末端のDNAへの結合の活性を調節しており、この調節が転写複合体 (transcription complex) 形成と転写開始に影響を与えている。このポリグルタミン領域をコードするCAGの繰り返しの数が多くなり、結果、ポリグルタミン鎖が伸長する変異は、神経変性である脊髄小脳失調症17型 (SCA17) に関係している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カナバニン(Canavanine)は、豆果に含まれる、タンパク質を構成しないアミノ酸である。構造的にはアルギニンと関連があり、アルギニンのメチレン基(-CH2-)がカナバニンではオキサ基(酸素原子)になっている。カナバニンは主に種子に蓄積し、草食動物からの防護と成長中の胚の窒素源の2つの役割を持つ。カナバニンの毒性のメカニズムは、これを摂取した生物がアルギニンと間違えてタンパク質に取り込み、適切な機能を持たない構造的に異常なタンパク質が作られることによるものである。 ある特殊な草食動物は、カナバニンを効率的に代謝したり、新しいタンパク質への取込みを避けたりして、カナバニン耐性を持つ。この能力の例は、やの幼虫で見られ、大量のカナバニンの摂取にも耐えられる。これらの幼虫は、恐らく基質特異性の高いアルギニンtRNAリガーゼのためにカナバニンのタンパク質への取込みを避けることができる。対照的に、タバコスズメガの幼虫はアルギニンtRNAリガーゼの基質特異性が低いため、生体重で1.0 μg/kgという少量のカナバニンの摂取に耐えられない。これらの生物のアルギニンtRNAリガーゼは実験的に調べられていないが、タバコスズメガで、されたアルギニンとカナバニンの取込の比率が約3:1であることが示されている。 マメ科のDioclea megacarpaの種子は、多量のカナバニンを含んでいる。マメゾウムシ亜科のCaryedes brasiliensisはこれに耐性を持つが、既知で最も基質特異性の高いアルギニンtRNAリガーゼを持つ。この昆虫では、新しく合成されたタンパク質に取り込まれるカナバニンの放射性標識は、ほぼ検出されない。さらに、カナバニンを他のアミノ酸合成のための窒素源として用いることができる。 カナバニンを摂取させたNZB/W F1、NZB、DBA/2のマウスは、全身性エリテマトーデスと似た症状を示すが、1%のカナバニンを含むタンパク質を恒常的に摂取したBALB/cマウスは、寿命に変化は見られなかった。カナバニンの毒性は、恐らくタンパク質欠乏の状況で強まり、1%程度のカナバニンを含むの種子の摂取による毒性は、「イントゥ・ザ・ワイルド」で映画化されたの死の原因として示唆されている。 ムラサキウマゴヤシの種子と芽はカナバニンを含み、ヒトを含むサル目の全身性エリテマトーデス様症状やその他の自己免疫疾患と関連している。多くの場合、消費を止めると問題が解消される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロピオン酸(プロピオンさん、英: propionic acid)は、カルボン酸の一種。IUPAC命名法でプロパン酸 (propanoic acid)。消防法による第4類危険物 第2石油類に該当する。 語源は「最初の脂肪酸」という意味で、油脂の加水分解により得られる脂肪酸のうち、最も炭素数の少ないものであったことによる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エチレンジアミン四酢酸(エチレンジアミンしさくさん、ethylenediaminetetraacetic acid)は、金属キレーション剤の1種であり、EDTA あるいはエデト酸と呼ばれることがある。通常、とくに断りのない場合、 EDTA はジナトリウム塩であり、日本薬局方ではエデト酸ナトリウムである。ジナトリウム塩であることを正確に記述したい場合や強調したい場合などは、エチレンジアミン四酢酸二ナトリウム、エチレンジアミン四酢酸二水素二ナトリウム、EDTA・2Na、などと記述される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ボスチニブ(Bosutinib)はチロシンキナーゼ阻害作用を持つ抗がん剤(分子標的薬)であり、慢性骨髄性白血病の治療に用いられる。ワイスにより創薬され、ファイザーによる買収後、同社で開発が継続された。商品名ボシュリフ。治験コードSKI-606。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キュリウム (英: curium [ˈkjʊəriəm]) は原子番号96の元素。元素記号は Cm。アクチノイド元素の一つ。超ウラン元素でもある。安定同位体は存在しない。 銀白色の金属で、常温、常圧で安定な結晶構造は面心立方構造 (α、fcc)で、約500℃で体心立方(β、dcc)、更に約1000℃で六方最密充填構造(γ、hcp)が安定となる。比重は理論値で13.51、融点は1340 °C (1350 °C)、沸点は3520 °C。原子価は+3、+4価。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルコノラクトン (gluconolactone) は、グルコースの1位のヒドロキシ基がケトンに置き換わった、代表的なラクトンの一種である。別名をグルコノ-δ-ラクトンといい、GDL と略される。 生体内ではグルコース-1-デヒドロゲナーゼの作用によりグルコースから変換される。たとえば、ミツバチは体内でグルコースからグルコノラクトンを作り、蜂蜜に多く含まれる。そのため別名ハチミツ酸とも言われる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヘキサフルオロベンゼン (Hexafluorobenzne, HFB, C6F6, Perfluorobenzne) は、ベンゼンの水素が全部フッ素で置き換えらた芳香族有機化合物である。技術的な使用は限定されているが、光化学反応の溶媒として推奨されている。研究室では、19F-NMR の標準、13C-NMR の溶媒と標準、1H-NMR の溶媒、赤外スペクトルの一部の研究をする場合の溶媒、紫外部領域にはほとんど吸収を示さないため紫外可視スペクトルの溶媒として使用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-ニトロフェノール (4-nitrophenol) はニトロ基を有するフェノール化合物であり、別名としてp-ニトロフェノール、4-ヒドロキシニトロベンゼンとも呼ばれる。CAS登録番号 100-02-7、化審法3-777。PRTR第1種239。分子式 C6H5NO3。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キニーネ(蘭: kinine)またはキニン(英: quinine、クイニン)は、キナの樹皮に含まれる分子式C20H24N2O2のアルカロイドである。IUPAC名は(6-Methoxyquinolin-4-yl)[(2S,4S,5R)-5-vinyl-1-aza-bicyclo[2.2.2]oct-2-yl]-(R)-methanol。1820年にキナの樹皮から単離、命名され、1908年に平面構造が決定し、1944年に絶対立体配置も決定された。また1944年にロバート・バーンズ・ウッドワードらが全合成を達成した。ただしウッドワードらの全合成の成否については後述の通り議論がある。 マラリア原虫に特異的に毒性を示すマラリアの特効薬である。キューガーデンが移植を手がけて以来、帝国主義時代から第二次世界大戦を経てベトナム戦争まで、ずっとかけがえのない薬だった。米国は野戦病院等でキニーネを使い、1962-1964年頃に手持ちが底をついた。急に大量発注され、そこへ国際カルテルが便乗し、キニーネは暴騰した。参加企業は欧州諸共同体のキニーネ/キニジンメーカーを網羅していた。 その後、キニーネの構造を元にクロロキンやメフロキンなどの人工的な抗マラリア薬が開発され、ある程度の副作用のあるキニーネは代替されてあまり用いられなくなっていった。しかし、東南アジアおよび南アジア、アフリカ、南アメリカ中北部といった赤道直下の地域において熱帯熱マラリアにクロロキンやメフロキンに対して耐性を持つものが多くみられるようになったため、現在ではその治療に利用される。 また強い苦味を持つ物質として知られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リバビリン(Ribavirin)は、抗ウイルス薬の一つで、主にC型肝炎やウイルス性出血熱等の治療で施行されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フルラゼパム (flurazepam) とは、ベンゾジアゼピン系の睡眠導入剤の一種。長時間作用型。 日本ではダルメート、ベノジールという商品名で発売されている。日本の処方箋医薬品であり、医師の処方箋なしでは入手することはできない。アメリカ・カナダ・オーストラリアではダルメーン。 連用により依存症、急激な量の減少により離脱症状を生じることがある。向精神薬に関する条約のスケジュールIVに指定されている。麻薬及び向精神薬取締法の第三種向精神薬である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アポシニン(アセトバニロン、アセトグアイアコンとも)は天然の有機化合物でバニリンと類似した構造を持つ。NADPHオキシダーゼ活性を阻害し活性酸素の生産を抑制する作用があるため、抗炎症効果を持つ。様々な植物から単離することができ、薬理学的研究が行われている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ベンジルアミン (benzylamine) とは有機化合物の一種で、アンモニアの水素がひとつベンジル基に置き換わった一級アミンである。外見は無色の液体で、有機合成の原料として用いられる。 ベンジルアミンはベンゾニトリルの水素化によって得られる。 二級アミンを合成したい場合、ベンジル基がによって除去可能であることから、ベンジルアミンはアンモニアの合成等価体として用いられる。 (XはClやBrなどのハロゲン、もしくはOTsなどの脱離基。) 一段階目の反応を進めるため、通常はHXを捕捉する塩基が加えられる。ベンジルアミンの代わりにアンモニアを用いると、RX との反応で三級アミンR3Nあるいは四級アンモニウム R4N+の生成が起こる。 空気に触れているとゆっくり炭酸塩へ変わる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ノナン (nonane) は化学式C9H20で表される直鎖アルカン炭化水素。無色、可燃性の液体であり、暖房、トラクター、ジェット燃料として使われているケロシンと呼ばれる石油の分留成分に含まれている。溶媒、蒸留チェイサー、燃料添加物、生分解性洗剤の成分としても使われている。 35種の構造異性体が存在する。 置換基はノニルである。対応するシクロアルカンはシクロノナン(C9H18)である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    テオフィリン(英語: Theophylline)は、茶葉に含まれる苦味成分であり、アルカロイドの一種で、カフェインやテオブロミンと同じキサンチン誘導体に分類される。強力な気管支拡張作用があり、医薬品として、気管支喘息や慢性気管支炎、慢性閉塞性肺疾患(COPD)などの呼吸器系疾患の治療に用いられる。しかしその際に、副作用で痙攣を起こすことがあり問題になっている。茶葉に含まれる量は、医薬品として用いられる量に比べて非常に少ない。カフェインが肝臓で代謝される際の産生物の一部である。テオフィリンの作用は主として、ホスホジエステラーゼの阻害によるセカンドメッセンジャーとしての細胞内cAMP濃度の増大によるものである。 日本における商品名はテオロング(エイザイ)、テオドール(田辺三菱製薬)、ユニフィル(大塚製薬)などがあるが、この他に現在は後発医薬品が各社から販売されている。徐放錠剤、徐放顆粒剤、内用液、シロップ剤等が存在する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリデシル酸(Tridecylic acid)は、化学式CH3(CH2)11COOHの13炭素長の飽和脂肪酸である。系統名は、トリデカノン酸(tridecanoic acid)である。乳製品中に一般的に見られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    テノイルトリフルオロアセトン (英: thenoyltrifluoroacetone, C8H5F3O2S) は、薬理学的にキレート剤として使われる化合物である。電子伝達系の複合体IIをブロックし、細胞呼吸を阻害する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    UDP-グルコース-6-デヒドロゲナーゼ(UDP-glucose 6-dehydrogenase)は、次の化学反応を触媒する酸化還元酵素である。 UDP-グルコース + 2 NAD+ + H2O UDP-グルクロン酸 + 2 NADH + 2 H+ 反応式の通り、この酵素の基質はUDP-グルコースとNAD+と水、生成物はUDP-グルクロン酸とNADHとH+である。 組織名はUDP-glucose:NAD+ 6-oxidoreductaseである。別名に、UDP-glucose dehydrogenase、uridine diphosphoglucose dehydrogenase、UDPG dehydrogenase、UDPG:NAD oxidoreductase、UDP-alpha-D-glucose:NAD oxidoreductase、UDP-glucose:NAD+ oxidoreductase、uridine diphosphate glucose dehydrogenase、UDP-D-glucose dehydrogenase、uridine diphosphate D-glucose dehydrogenaseがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エリスロマイシン (INN:erythromycin) とは、14員環マクロライド系抗菌薬の1つである。日本では「エリスロシン」の商品名でも販売されてきた経緯が有るものの、化学でエリスロシン(英語:erythrosine)と言った場合には、全く別な赤色の合成着色料の1種の名称である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ボリノスタット(Vorinostat)は、別名:スベロイルアニリドヒドロキサム酸(スベロイル+アニリド+ヒドロキサム酸、SAHA)として知られる化合物である。ヒストン脱アセチル化酵素(HDAC)阻害薬であり、広くエピジェネティクな活性を有する。商品名ゾリンザ。 他剤治療抵抗性・再発性の皮膚T細胞性リンパ腫(CTCL)への効果が期待される。日本における効能・効果は、「皮膚T細胞性リンパ腫」である。 またボリノスタットはHIV-1に感染した静止期のCD4+T細胞からHIV遺伝子を「放り出し」、プロウイルス状態でのHIV-1の潜伏を阻止できることが示された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キナゾリン (quinazoline) とは、ベンゼン環とピリミジン環の2個の6員環が縮合した構造を持つ芳香族化合物。分子式は  C8H6N2 で、外見は黄色の結晶。 医療では、抗マラリア剤やがんの治療薬にキナゾリンの誘導体が利用される。例えば降圧薬(α受容体遮断薬)のドキサゾシンはキナゾリン環を含む。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リナグリプチン(Linagliptin)は、ジペプチジルペプチダーゼ阻害薬に分類される経口血糖降下薬である。ジペプチジルペプチダーゼはインクレチンの分解などに関係する酵素であり、これを阻害することにより血中のグルカゴン様ペプチド-1(GLP-1)の濃度を高め、血清インスリン濃度の上昇 および 血糖値の低下をもたらすと考えられている。日本では商品名トラゼンタで、日本イーライリリーおよび日本ベーリンガーインゲルハイムから販売されている。 GLP-1アナログ製剤と同じくインクレチン関連薬に分類される。SU剤に代表される経口血糖降下薬に比べて、低血糖のリスクが少ないと言われている。副作用としては、腹部膨満・便秘・浮腫などが報告されている。 ジペプチジルペプチダーゼ-4(DPP-4)によって分解されるGLP-1以外のペプチド基質については、DPP-4の項を参照されたい。 リナグリプチンを含むDPP-4 阻害薬は、癌リスク上昇と関連していなかった旨が報告されたが、解析に用いられた研究の試験期間は二年以下と短い。ゆえに、長期的な癌リスクは、現時点では明らかではないと考えるべきである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒポキサンチン(Hypoxanthine)は、天然に存在するプリン誘導体の一つである。ヒポキサンチンは核酸で見られ、ヌクレオシドイノシンの形でtRNAのアンチコドンに存在する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    レニン(Renin, EC.3.4.23.15)はアンジオテンシノーゲンのペプチド結合を分解してアンジオテンシンIを合成するタンパク質分解酵素の一種。アンジオテンシノーゲン中の非常に特異的なペプチド配列を認識し分解するため、発見当初は活性化の仕組みがわからずホルモンかキナーゼの一種ではないかと考えられていた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アミトリプチリン(Amitriptyline)は、抗うつ薬の中でも最初に開発された三環系抗うつ薬(TCA)の一種である。主に抗うつ用途として処方されるケースが多いが、神経痛や薬物乱用頭痛の緩和、それにともなう頭痛薬の断薬などを目的に処方されるケースもある。作用機序としては、脳内においてノルアドレナリン及びセロトニンの再取り込みを抑制し、シナプス領域のモノアミンが増量する。日本での先発品名はトリプタノール、ラントロン、旧称ノーマルンである。 副作用では添付文書などにおいて、自殺リスクの増加のおそれについての注意がある。減薬は徐々に行う必要がある。抗コリン作用が強く、口渇、便秘、めまい、眠気、排尿障害、などの三環系抗うつ薬にありがちな副作用が強く現れやすい。 世界保健機関の必須医薬品の一覧に収録されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デオキシグアノシン三リン酸(Deoxyguanosine triphosphate、dGTP)は、ヌクレオシド三リン酸であり、DNA複製に用いられるヌクレオチドの前駆体である。この物質は、シークエンスやクローニングにおけるポリメラーゼ連鎖反応に用いられる。また、単純ヘルペスウイルスの治療に用いられるアシクロビルを競合阻害する 。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ベンゼン(英: benzene)は、分子式 C6H6、分子量 78.11 の最も単純な芳香族炭化水素である。原油に含まれており、石油化学における基礎的化合物の1つである。分野によっては慣用としてドイツ語 (Benzol:ベンツォール) 風にベンゾールと呼ぶことがある。ベンジン(benzine、主として炭素数5 - 10の飽和炭化水素からなる混合物)とはまったく別の物質であるが、英語では異綴の同音異義語である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    尿素(にょうそ、英: urea)は、有機化合物で、生体の代謝に使われ尿中に排泄される。カルバミドともいう。無機化合物から初めて合成された有機化合物として、有機化学史上、重要な物質である。 保水作用があり皮膚に水分を保持している成分のひとつで、保湿剤や濃度を高くし角質融解に使われる。肥料や防氷剤にも使われる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    α2-マクログロブリン(英: alpha-2-Macroglobulin、略称: α2M)は、血液中に存在する巨大(720 kDa)な血漿タンパク質である。主に肝臓で産生されるが、マクロファージ、線維芽細胞、副腎皮質細胞でも局所的な合成が行われる。ヒトではA2M遺伝子にコードされる。 α2-マクログロブリンは抗プロテアーゼ機能を持ち、きわめて多様なプロテアーゼを不活性化することができる。プラスミンやカリクレインを阻害し、の阻害因子として機能する。トロンビンを阻害し、血液凝固の阻害因子としても機能する。α2-マクログロブリンは、血小板由来成長因子(PDGF)や塩基性線維芽細胞増殖因子(bFGF)、TGF-β、インスリン、IL-1βなど、多数の成長因子やサイトカインと結合し、これらの生物学的活性に影響を与えている可能性がある。 疾患と関係した特異的な欠乏症や、α2-マクログロブリンが低濃度となることが原因となる疾患も知られていない。ネフローゼ症候群において、他の低分子量タンパク質が尿中へ失われた際、α2-マクログロブリンの濃度は増加する。α2-マクログロブリンはサイズが大きいため尿中への喪失を免れ、膠質浸透圧の維持に寄与している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チミン (thymine) はデオキシリボ核酸 (DNA) を構成する塩基の1つで、ピリミジンの誘導体。5-メチルウラシルとも呼ばれるように、ウラシルの5位の炭素をメチル化した構造を持つ。英発音に従ってサイミンともいう。DNA中にのみ見られ、リボ核酸 (RNA) ではほとんどの場合ウラシルに置き換わっている。2本の水素結合を介してアデニンと結合する。 DNA はアデニン (A)、グアニン (G)、シトシン (C)、チミン (T) の4種で構成されている。アデニン、グアニン、シトシンは RNAの核酸塩基にも同じ構造が見られるが、RNAではチミン (T) がウラシルに置き換わっている。チミンとウラシルは共にピリミジン環を持つ非常に似た塩基である。 シトシンが化学分解されるとウラシルが生成してしまうため、DNAではウラシルの代わりにチミンが用いられるようになった。これによりシトシンの分解により誤って生成してしまったウラシルを検出し、修復することが可能になるなどの利点が生じた。DNAは配列を保存することが何より重要であるため、DNAにチミンが用いられることは理に適っていると言える。一方、RNAにおいては配列の正確性がそれほど重要ではないため、ウラシルが用いられていると考えられる。 チミンの生合成については、デオキシウリジン一リン酸と5,10-メチレンテトラヒドロ葉酸は、チミジル酸シンターゼ (FAD)によりメチル化されたチミジル酸(dTMP)とテトラヒドロ葉酸を生成する。 (反応式)5,10-メチレンテトラヒドロ葉酸 + デオキシウリジン一リン酸(dUMP) + FADH2 チミジル酸(dTMP) + テトラヒドロ葉酸 + FAD なお、DNAの合成は、dUMP(デオキシウリジン一リン酸)-dTMP(チミジル酸)-dTDP(チミジン二リン酸)-dTTP(チミジン三リン酸)と進み、リン酸2分子分のピロリン酸が遊離して、チミジル酸に相当する部分がDNA鎖のデオキシリボースの3'位に結合することで、アデニン、グアニン、シトシン、チミンと4種類あるDNA塩基のうちのチミンが完成する。 DNAの変異として一般的なものに、隣接した2個のチミンあるいはシトシンが紫外線によって二量体となり、機能障害を引き起こす「キンク」と呼ばれる部分を形成する現象がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリクロサン(英語: triclosan)は、医薬部外品の薬用石鹸、うがい薬、食器用洗剤、練り歯磨き、脱臭剤、手の消毒剤、及び化粧品など、様々な場面で使用されている、一般的な家庭用の抗菌剤である。アメリカではその効果への疑問や健康リスクからトリクロサンを含む一般用抗菌石鹸の販売は禁止されている。 トリクロサンは高濃度では、複数の細胞質と細胞膜を標的にとして作用する。低濃度では、エノイル酵素に結合し、脂肪酸合成を阻害することにより、静菌的に作用する。脂肪酸は、細胞膜を構築したり再生するために必要である。ヒトはENR酵素(エノイル[アシル輸送タンパク質]レダクターゼ (NADH))を持っていないため影響を受けないとされる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チチン(Titin)またはコネクチン(connectin)は、骨格筋の収縮に関わるタンパク質である。長さ1µmを超える巨大なタンパク質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チクロピジン(Ticlopidine)は、チエノピリジン系の抗血小板剤である。日本や台湾においては、医薬品としての商品名としてパナルジンとも呼ばれている。英語圏での商品名はTiclidである。体内で代謝を受けてはじめて薬効を発揮するプロドラッグであり、肝臓で代謝されたのち血小板膜上のアデノシン二リン酸(ADP)受容体であるP2Y12受容体を阻害する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリメシン酸は、化学式C9H6O6で表される有機化合物である。ベンゼン環の1、3、5位にカルボン酸が結合している構造から、1,3,5-ベンゼントリカルボン酸とも称する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ドデカノール (dodecanol) は高級アルコールの一種。炭素数は12。ラウリン酸(ヤシ油)の還元によって得ることができる。 用途は界面活性剤の製造(ラウリル硫酸ナトリウム、ラウレス硫酸ナトリウムなど)、潤滑油。 エタノールの約半分の毒性があり、海洋生物にとっては非常に有害である。LD50は12800 mg/kg(ラット、経口)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エファビレンツ(efavirenz, EFV)は商標名のサスティバ(Sustiva)などで販売されるHIV/エイズの予防と治療に用いられるである。一般的に他の抗レトロウイルス薬との併用が勧められる。注射針による怪我やその他の潜在するウイルスに曝露した場合の感染予防に用いられる。単体または混合薬ので売られる。投与法は経口である。 主な副作用には発疹、吐き気、頭痛、疲労感、不眠症などがあげられる。一部の発疹にはスティーブンス・ジョンソン症候群など重度の副作用がある。その他の重度の副作用には、うつ病、、肝臓病、発作があげられる。妊娠中の使用は安全ではない。(NNRTI)の一つであり、その作用機序は逆転写酵素の働きを阻害することで効果がある。 エファビレンツが米国で医薬品として承認されたのは1998年である。世界保健機関の必須医薬品リストに掲載されており、最も効果的で安全な医療制度に必要とされる医薬品である。2015年の時点では後発医薬品としては入手できない。開発途上国での卸売価格は1か月分約$3.27~$9.15米ドルである。2015年時点の米国での一般的な1か月分の薬にかかる費用は$200米ドル以上である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メタンチオール (methanethiol) は化学式 CH3SH で表されるチオールの一種である。メチルメルカプタン (methyl mercaptan) とも呼ばれる。腐ったタマネギのにおいがする無色の気体である。天然にはある種の種実類やチーズなどにも含まれ、ヒトや動物の血液、脳、およびその他の組織中にも存在する。動物の糞から放出される。また、口臭や屁の悪臭の成分のひとつである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピルビン酸(ピルビンさん、Pyruvic acid)は有機化合物で、カルボン酸の一種。IUPAC命名法で 2-オキソプロパン酸 (2-oxopropanoic acid) と表される。α-ケトプロピオン酸 (α-ketopropionic acid) あるいは焦性ブドウ酸 (pyroracemic acid) とも呼ばれる。水、エタノール、エーテルなど、さまざまな極性溶媒や無極性溶媒と任意な比率で混和する。酢酸に似た酸味臭を示す。2位のカルボニル基を還元すると乳酸となる。 生体内では解糖系による糖の酸化で生成する。 ピルビン酸デヒドロゲナーゼ複合体の作用により補酵素Aと結合するとアセチルCoAとなり、クエン酸回路や脂肪酸合成系に組み込まれる。 また、グルタミン酸からアミノ基を転移されるとアラニンになる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルカゴン ( Glucagon ) とは、29アミノ酸残基からなるペプチドホルモンの一種であり、タンパク質およびアミノ酸( Amino Acid )の代謝に重要な機能を持つ。分子量3,485。インスリン( Insulin' )とともに血糖値( Blood Glucose Levels, Blood Sugar Concentration )の制御に関係する重要なホルモンの一つである。 インスリンは血糖値を低下させるが、グルカゴンはそれとは逆に血糖値を上昇させるホルモンの一つであり、人体が低血糖になるのを防ぐため、肝細胞に働きかけることでグリコーゲンを分解するよう信号を送り、血糖値の上昇を促進する(血糖値を低下させるホルモンはインスリンのみであるが、血糖値を上昇させるホルモンはグルカゴン以外にも複数備わっている)。主に膵臓のランゲルハンス島のA細胞(α細胞)で生合成・分泌されるほかに、消化管からも分泌される。 1923年、キンボール( Kimball )とマーリン( Murlin )が、膵臓からの抽出物から発見した。「膵外グルカゴン」は「腸管グルカゴン」とも呼ばれ、胃底部に最も多く分布する。発見者は小野一幸。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アンゲリカ酸(アンゲリカさん、Angelic acid)、アンゼリカ酸は不飽和カルボン酸の一種である。IUPAC名は (Z)-2-メチルブタ-2-エン酸 (Z)-2-methylbut-2-enoic acid。セイヨウトウキ(アンゼリカ、学名 Angelica archangelica)の根から、ルートヴィヒ・ブフナー (Ludwig Andreas Buchner) によって1842年に発見された。そのほかセリ科の植物などに含まれる。 カルボキシル基の隣に炭素-炭素二重結合を持ち、チグリン酸のシス・トランス異性体である。揮発性がある無色の結晶で、刺激性のある酸味とにおいを持つ。以前は鎮静剤として用いられていた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ビオチン(英: biotin)は、ビタミンB群に分類される水溶性ビタミンの一種で、ビタミンB7(英: vitamin B7)とも呼ばれるが、欠乏症を起こすことが稀なため、単にビオチンと呼ばれることも多い。栄養素のひとつ。古い呼称でビタミンH、補酵素R。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルタル酸(グルタルさん、Glutaric acid)は構造式 HOOC–(CH2)3–COOH で表されるカルボン酸の一つ。IUPAC命名法では1,5-ペンタン二酸(1,5-pentanedioic acid)またはプロパン-1,3-ジカルボン酸(propane-1,3-dicarboxylic acid)である。無色からわずかに薄い黄色の結晶または結晶性粉末で、水に可溶、アルコール、エーテルに易溶。融点95~98℃、沸点200℃、分子量132.11。CAS登録番号は110-94-1。 グルタル酸は、トリプトファンの代謝経路であるグルタル酸経路や、代謝において最も重要なクエン酸回路に関与している。2位にアミノ基が結合した2-アミノグルタル酸は、重要なアミノ酸であるグルタミン酸として知られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    tert-ブチルアミン(ターシャリーブチルアミン、英: tert-Butylamine)は、tert-ブチル基を持ち、化学式C4H11Nで表される脂肪族アミンの一種。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アミノグアニジン(AminoguanidineまたはPimagedine)は曾て糖尿病性腎症治療薬として開発されていた化合物である。ジアミンオキシダーゼや一酸化窒素合成酵素を阻害する。と反応して(AGEs)を減少させる。ロケット燃料としても使用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アピキサバン(Apixaban、開発コードBMS-562247-01)は、血栓塞栓症の治療・予防に用いられる、経口投与が可能な抗凝固剤の1つである。商品名エリキュース。血液凝固因子の1種であるXa因子を薬剤そのものが阻害する、に分類される。また、第Xa因子は酵素なので、酵素阻害剤に分類される薬剤でもある。なお、肝代謝型(肝排泄型)の薬剤としても知られる。 欧州で2012年4月に、日本で2012年12月に、米国で2012年12月に承認された。当初の承認は心房細動患者の血栓症予防であったが、2014年〜2015年に静脈血栓塞栓症の治療と再発予防について追加承認された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ドデカン(Dodecane)は、炭素数12の直鎖アルカンである。常温常圧で無色の液体。可燃性があり、日本では消防法により危険物第4類に指定されている。他のアルカンと同様、無極性溶媒によくとける。355の構造異性体がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ラクトース(Lactose)または乳糖(にゅうとう)は、二糖類の低甘味度甘味料。ショ糖の0.4倍の甘味を有する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    環状グアノシン一リン酸(Cyclic guanosine monophosphate、cGMP)は、グアノシン三リン酸(GTP)から誘導されるである。cGMPは環状アデノシン一リン酸と同様にセカンドメッセンジャーとして利用される。ペプチドホルモンが細胞膜に結合するとプロテインキナーゼを活性化させる作用がよく知られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スペルミジン (spermidine) はポリアミンに分類される有機化合物で、の際にRNAポリメラーゼの一種である酵素を活性化するのに利用されることがある。 一酸化窒素合成酵素 (nNOS) を阻害する、DNAへの結合・誘発作用を持つ、T4 ポリヌクレオチドキナーゼ活性を誘起する、などの特徴がある。DNA結合タンパク質の精製に利用することもできる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    タモキシフェン(Tamoxifen、TAM)とは、抗悪性腫瘍剤(抗がん剤)の一種。イギリスICI社(現アストラゼネカ社)によって1963年に開発された非ステロイド性のである。クエン酸塩が、ノルバデックス(販売:アストラゼネカ)などの商品名で市販されている。 世界保健機関 (WHO) の下部組織によるIARC発がん性リスク一覧のグループ1に属する。ヒトに対する発癌性の十分な証拠がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インドリン(Indoline)は、複素環式化合物である。ベンゼンの六員環と窒素を含む五員環が一辺を共有して結合した構造をしている。窒素原子の位置が違う異性体にイソインドリンがある。酸化型はインドールである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    塩化銅(II)(えんかどう に、英: copper(II) chloride)は、化学式が CuCl2 と表される銅の塩化物である。無水物と二水和物がある。無水物は褐色がかった黄色であり、二水和物は青緑色の結晶である。潮解性があり、無水物は吸湿性もある。水和物は110℃で無水物になる。993℃まで熱すると、塩化銅(I)と塩素に分解する。水に溶けやすく、メタノール、エタノール、アセトン、酢酸エチルなどに可溶。CAS登録番号は[7447-39-4]。有毒で、毒物及び劇物取締法により、劇物に指定されている。また、電気分解によって、塩素と銅に分解できることから中学校の理科で電気分解の学習にも用いられる。花火の緑色の発色剤としても用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    O-アセチルセリン(O-acetylserine)は、α-アミノ酸の一つで、構造式がHO2CCH(NH2)CH2OC(O)CH3の化合物である。細菌や植物でシステイン生合成の中間体となる。 (EC 2.3.1.30)によるセリンのアセチル化によって生合成され、システインシンターゼ(EC 2.5.1.47)によって、硫黄源を用いてシステインに変換されると同時に酢酸を放出する。 HO2CCH(NH2)CH2OH → HO2CCH(NH2)CH2OC(O)CH3HO2CCH(NH2)CH2OC(O)CH3 → HO2CCH(NH2)CH2SH

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アンモニウム(ammonium)は、化学式NH4+の分子イオンである。アンモニア(NH3)のプロトン化によって形成されるオニウムイオンである。アンモニウムは、NH4+の1つ以上の水素原子が有機基に置き換わってできる、陽電荷を持った、またはプロトン化置換基を持つアミンや、第四級アンモニウムカチオン(NR4+)に対する一般名でもある。「アンモニウムイオン」とも呼ばれるが、「アンモニウム」という用語自体がイオンの名前である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ポナチニブ(Ponatinib、開発コード:AP24534)は、慢性期慢性骨髄性白血病 (CML)およびフィラデルフィア染色体陽性(Ph+)急性リンパ性白血病(ALL)治療のための経口薬で、多標的のチロシンキナーゼ阻害剤である。CMLの中にはT315I変異を有するものがあり、イマチニブ等の治療に抵抗性を示すが、ポナチニブは、このようなタイプの腫瘍に効果を示す様に設計されている。 米国食品医薬品局は、2012年12月に本剤を承認候補薬として認定したが、「生命を脅かす血栓や重度の血管狭窄のリスクがある」として、2013年10月31日に販売を一時停止させた。その後、添付文書に新たな「黒枠警告」が設置され、本剤を使用する事によるリスクとベネフィットをより適切に評価するための「リスク評価および軽減戦略」が策定され、2013年12月20日に停止が一部解除された。 日本では、2016年1月に大塚製薬が製造販売承認申請を行い、同年9月に承認された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カスタノスペルミン (castanospermine) は、オーストラリアビーンズ (Castanospermum australe) の種から初めて単離されたインドリジジンアルカロイドである。数種のグルコシダーゼの強力な阻害剤であり、抗ウイルス活性をもつ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    c-Fosは、レトロウイルスのがん遺伝子v-fosのホモログであるがん原遺伝子(ヒトではFOS)にコードされるタンパク質である。c-Fosはラット線維芽細胞において、FBJ MSV(Finkel–Biskis–Jinkins murine osteogenic sarcoma virus)と呼ばれるウイルスの形質転換遺伝子との類似性から発見された。c-FosはFosファミリーの転写因子であり、Fosファミリーには他に、、が含まれる。c-Fosはとヘテロ二量体を形成してAP-1複合体となり、標的遺伝子のプロモーターやエンハンサー領域のAP-1特異的部位のDNAに結合することで、細胞外のシグナルを遺伝子発現の変化へと変換する。c-Fosは多くの細胞機能で重要な役割を果たしており、さまざまながんで過剰発現していることが知られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グリチルレチン酸(Glycyrrhetinic acid)は、甘草から得られるグリチルリチン酸の加水分解によって得られるβ-アミリン(オレアナン)系の五環式テルペノイド誘導体の一つ。アロエやキニーネのような薬品の苦味を緩和するための調味料として用いられる。胃潰瘍の治療に効果的であり、去痰剤としての特性もある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メチラポン(Metyrapone)は副腎機能障害の診断や、時としてクッシング症候群の治療に使用される薬物の一つである。11-β-ヒドロキシラーゼを阻害することによりコルチゾールの合成を抑制する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    テトラヒドロゲストリノン (tetrahydrogestrinone) とは、によって開発されたアナボリックステロイドである。THG、クリア (the clear) とも呼ばれる。アンドロゲン受容体とプロゲステロン受容体に親和性があるが、エストロゲン受容体にはない。この薬物は、禁止薬物のアナボリックステロイドであるとと深い関連のあるデザイナードラッグだと考えられている。また、2005年に予定されていた認可より前の2003年には、アメリカ食品医薬品局(FDA)が認可していない新薬としても言及されていた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリグリム (triglyme) とは、有機化学で用いられる高沸点の溶媒の一種。別名としてトリグライム、トリエチレングリコールジメチルエーテルとも呼ばれる。 triglyme は triethyleneglycol dimethyl ether の略。 トリエチレングリコールの2つのヒドロキシ基をメチル化した構造を持つ。水、各種アルコール、ジエチルエーテル、各種炭化水素系の溶媒と混和する。 トリグリムは主に化学反応の溶媒として用いられる。金属カチオンにキレート配位して対アニオンを活性化させることができる。そのため、グリニャール試薬や金属ヒドリドなどの金属化合物を反応剤とする場合に反応速度を上げる目的で用いられる。 この溶媒は塩基性に強く、強塩基存在下に加熱しても通常は安定である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クリゾチニブ (英語: Crizotinib) は、ALK(未分化リンパ腫キナーゼ)および阻害薬であり、ALK融合遺伝子陽性の切除不能な進行・再発の非小細胞肺癌(non-small cell lung cancer、略称:NSCLC)の治療に用いられる。商品名はザーコリ。また、米国ではROS1陽性転移性NSCLC治療薬としても承認されている。未分化大細胞型リンパ腫、神経芽細胞腫、その他固形進行癌の治療での安全性および有効性について臨床試験が実施されている。開発コードPF-02341066。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フルクトース (fructose)、または果糖(かとう、fruit sugar)は、糖の一種であり、単糖の一つで、三文字表記はFruである。水溶性の白色の結晶であり、全ての糖の中で最も多く水に溶ける。フルクトースは、ハチミツ、木に成る果実、ベリー類、メロン、ある種の根菜に多量に含まれている。毎年240,000トンの結晶フルクトースが合成されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アリルアミン(または、3-アミノプロペン、3-アミノプロピレン、モノアリルアミン、2-プロペンアミン、2-プロペン-1-アミン)は、化学式C3H7Nのアミンの有機化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    レスベラトロール(英語: resveratrol)はスチルベノイド(スチルベン誘導体)ポリフェノールの一種。系統名は3,5,4'-トリヒドロキシ-trans-スチルベン。いくつかの植物でファイトアレキシンとして機能しており、またブドウの果皮などにも含まれる抗酸化物質として知られる。 1939年、北海道帝国大学の高岡道夫により有毒植物バイケイソウ(Veratrum album)から発見され(有毒成分ではない)、レゾルシノール(Resorcinol)構造を有することから命名された。 レスベラトロールは赤ワインに含まれることから、フレンチパラドックスとの関連が指摘されており、心血管関連疾患の予防効果が期待されている。 レスベラトロールは寿命延長作用が、酵母、線虫、ハエ、魚類の研究で報告され、2006年には「Nature」誌にてヒトと同じ哺乳類であるマウスの寿命を延長させるとの成果が発表され、種を超えた寿命延長作用を持つとして大きな注目を集めた。 マウスなどのモデル生物・実験動物を用いた研究では、寿命延長・抗炎症・抗癌・認知症予防・放射線による障害の抑止・血糖降下、脂肪の合成や蓄積に関わる酵素の抑制などの効果が報告されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ノルトリプチリン (nortriptyline) は、抗うつ薬として用いられる有機化合物の一種。第1世代の三環系抗うつ薬として知られ、うつ病、うつ状態などの治療に用いられる。脳内神経末端へのノルアドレナリン、セロトニンの再取り込みを阻害する。無臭で水に不溶。 塩酸塩が、商品名ノリトレンで大日本住友製薬から販売されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エトポシド(Etoposide)とは、メギ科の植物Podophyllum peltatum あるいはP.emodi の根茎から抽出した結晶性成分であるポドフィロトキシンを原料とし、1966年に合成された抗悪性腫瘍剤(抗がん剤)。商品名は、ラステット(販売:日本化薬)、ベプシド(販売:ブリストル・マイヤーズ)。VP-16という略号で表されることもある。 WHO必須医薬品モデル・リストに収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェノール (英: phenol、benzenol) は、 * 広義には、芳香環(特にフェニル基のRの部分)に水酸基(ヒドロキシ基)が結合した化合物全般である「フェノール類」を指す。化学式はArOHで表される(Arはベンゼン環やナフタレン環など)。 * 狭義には、フェノール類のうち もっとも簡単な化合物であるヒドロキシベンゼン、つまりベンゼンの水素原子の一つが水酸基(ヒドロキシル基)に置換された化合物のこと。石炭酸。本記事では、この物質を中心に解説する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒドロコルチゾン(Hydrocortisone)は、副腎皮質ホルモンのコルチゾールが医薬品として販売される際の成分名。急性副腎不全、先天性副腎過形成症、高カルシウム血症、甲状腺炎、関節リウマチ、皮膚炎、気管支喘息、慢性閉塞性肺疾患に使われる。口腔、外用、または注射で利用できる。長期にわたって使用してから中止する際は、ゆっくりやめていく。ステロイド外用薬では日本での格付け5段階中4の酪酸プロピオン酸ヒドロコルチゾン(商品名パンデル)、2のミディアムの医薬品ヒドロコルチゾン酪酸エステル(商品名ロコイド)。 副作用には、気分の変動、感染症の危険性の増加、浮腫がある。長期的な使用による一般的な副作用には骨粗鬆症、腹痛、身体虚弱、痣、カンジダ症がある。妊婦における使用の安全性は不明。抗炎症作用と免疫抑制作用が作用する。 ヒドロコルチゾンは1955年に発見された。 WHO必須医薬品の一覧に収載されている。一般医薬品も利用できる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アグマチン(英: Agmatine、独: Agmatin)は、アルギニンの脱炭酸化生成物であり、ポリアミン生合成の中間体である。神経伝達物質であると推測されている。脳で生産され、シナプス小胞に貯蔵される。膜の脱分極によって放出され、によって尿素とプトレシンに分解されて不活化される。アグマチンはα2-アドレナリン受容体とイミダゾリン結合部位に結合し、NMDA型グルタミン酸受容体やカチオンリガンド依存性イオンチャネルをブロックするほか、一酸化窒素合成酵素の働きを阻害または増強する。また、ペプチドホルモンの放出を促進する作用も持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リポ酸(lipoic acid、別名:α-リポ酸、チオクト酸)は、多数の酵素の補助因子として欠かせない光学活性のある有機化合物である。抗酸化物質。カルボキシル基と環状のジスルフィドを含んでいる。生物学上で重要なのはR体である。リポ酸の酸化体は、還元体はジヒドロリポ酸である。 メタアナリシスでは糖尿病の指標改善や、少しではあるが体重減少効果が明らかになっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    α-シヌクレイン (あるふぁ-しぬくれいん) はSNCA 遺伝子によってエンコードされるアミノ酸140残基からなるタンパク質。 このタンパクの断片が、アルツハイマー病に蓄積するアミロイド中の (主な構成成分であるアミロイドベータとは別の) 成分として発見され、もとのタンパク質がNACP (Non-Abeta component precursor 非アミロイド成分の前駆体) と命名された。後にこれがシビレエイ属のシヌクレインタンパクと相同であることがわかり、ヒトα-シヌクレインと呼ばれるようになった。 α-シヌクレインの蓄積は、パーキンソン病をはじめとする神経変性疾患 (いわゆるシヌクレイノパチー) の原因とされている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オクチルアルコール (octyl alcohols) または オクタノール (octanols) とは、炭素数8の脂肪族一価アルコールの総称である。 n-オクタノール、イソオクチルアルコール、2-エチルヘキサノールなど、構造異性体が存在する。このうち、2-エチルヘキサノールについては当該記事を参照。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    Mycは、転写因子をコードする遺伝子ファミリーであり、かつがん原遺伝子のファミリーである。Mycファミリーは、関連する3つのヒト遺伝子c-Myc()、l-Myc()、n-Myc(MYCN)から構成される。c-Myc(単にMyc、MYCと呼ばれることもある)はこのファミリーで最初に発見された遺伝子であり、名称はウイルス遺伝子v-mycとの相同性に由来する。 がんでは、c-Mycはしばしば恒常的に発現している。c-Mycによって多くの遺伝子の発現が上昇し、その一部は細胞増殖に関与しているため、がんの形成に寄与することとなる。c-Mycと関係した染色体転座は、バーキットリンパ腫の症例の大部分で重要な役割を果たしている。c-Myc遺伝子の恒常的なアップレギュレーションは頸部、大腸、胸部、肺、胃の癌腫でも観察されている。そのため、Mycは抗がん剤の有望な標的であると考えられている。残念ながら、Mycは抗がん剤の標的として適さないいくつかの特徴を持っているため、タンパク質自身を標的とする低分子化合物ではなく、MycをコードするmRNAを標的とするなど、間接的にタンパク質に作用することが必要である。 ヒトゲノムでは、c-Mycはに位置しており、への結合を介して全遺伝子の15%の発現を調節していると考えられている。 典型的な転写因子としての役割に加えて、N-Mycはヒストンアセチル化酵素をリクルートする可能性がある。これによって、ヒストンのアセチル化を介して全体的なクロマチン構造の調節が可能となる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ブロモクリプチン(英: Bromocriptine、商品名 Parlodel(パーロデル)など)は、下垂体腫瘍、 パーキンソン病(PD)、高プロラクチン血症 、神経弛緩薬悪性症候群、および2型糖尿病の治療に用いられる、エルゴリン誘導体でドーパミンアゴニスト。 1968年に特許を取得し、1975年に医療用として承認された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ゲフィチニブ(Gefitinib)は、上皮成長因子受容体 (EGFR) のチロシンキナーゼを選択的に阻害する内服抗がん剤。癌の増殖などに関係する特定の分子を狙い撃ちする分子標的治療薬の一種である。商品名はイレッサ (Iressa) で、アストラゼネカが製造・販売。褐色の錠剤で一錠250mgのゲフィチニブを含有する。ゲフィチニブ製剤は手術不能または再発した非小細胞肺癌に対する治療薬として用いられる。 イレッサは2002年7月5日、世界に先駆けて日本で承認され、2003年5月5日、アメリカ食品医薬品局 (FDA) での承認を含め、いくつかの国で承認を受けた。しかし、無作為比較臨床試験(ISEL試験、後述)の結果、プラセボと比較して生存期間を延長することができなかったため、2005年1月4日アストラゼネカは欧州医薬品局 (EMEA) への承認申請を取り下げ、また2005年6月17日、FDAは本薬剤の新規使用を原則禁止とした。その後2009年7月1日、欧州医薬品局は、後述のINTEREST試験とIPASS試験の2つの無作為化第III相臨床試験の結果をもとに、成人のEGFR遺伝子変異陽性の局所進行または転移を有する非小細胞肺癌を対象にイレッサの販売承認を行った。2009年現在イレッサを承認している国は、日本を含めたアジア諸国、欧州、オーストラリア、メキシコ、アルゼンチンである。ゲフィチニブは白色から黄白色の粉末。開発コード名ZD1839。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シアン化物中毒(シアンかぶつちゅうどく、英: cyanide poisoning)は多くの種類のシアン化物にさらされることによって起こる中毒である。シアン化合物中毒(シアンかごうぶつちゅうどく)、シアン中毒(シアンちゅうどく)、青酸中毒(せいさんちゅうどく)とも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホメピゾール(Fomepizole、別名:4-メチルピラゾール)は、エチレングリコールまたはメタノール中毒ならびにその疑い例の解毒に用いる医薬品である。単独投与またはダイアライザーによる透析と並行して用いる。それとは別に、錯体化学での4-メチルピラゾールの挙動が研究されている。WHO必須医薬品モデル・リストに収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-ヒドロキシベンズアルデヒド(4-hydroxybenzaldehyde)は、3種あるヒドロキシベンズアルデヒドの異性体の一つである。ラン科のオニノヤガラやGaleola faberi から発見されている。バニラではバニリンの生合成中間体となっている。 デーキン反応によってヒドロキノンと、対応するカルボン酸に変換される。 代謝酵素として、4-ヒドロキシベンズアルデヒドデヒドロゲナーゼがニンジンから発見されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    タウロコール酸 (Taurocholic acid)は、脂肪を乳化することのできる融解性の透明な黄色の胆汁酸である。胆汁酸であるコール酸がタウリンと抱合したものである。ヒトの胆汁酸のうちの三分の一程度はこの物質である。生合成はコリルCoAとタウリンの反応である。 医薬的用法として、利胆剤や胆汁分泌促進剤として用いられている。 商業的な生産方法では、食肉産業の副生成物である牛の胆汁から作られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ニトロベンゼン (nitrobenzene) は、有機化合物で、ベンゼン環にニトロ基が置換した構造を持つ。ニトロベンゾール (nitrobenzol)、ミルバン油 (oil of mirbane) とも呼ばれる。黄色油状で甘い味覚がある。有毒で水に溶けにくい。杏仁豆腐のような、あるいは桃を腐らせたような芳香を持つ。日本法における劇物。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シュウ酸(シュウさん、蓚酸、英: oxalic acid)は、構造式 HOOC–COOH で表される、もっとも単純なジカルボン酸。二つのカルボキシ基を背中合わせにくっつけた分子である。IUPAC命名法ではエタン二酸(「二」はカタカナの「ニ」ではなく漢数字の「二」) (ethanedioic acid)。1776年、カール・ヴィルヘルム・シェーレによりカタバミ (oxalis) から初めて単離されたことから命名された。 命名の由来にもなったように、植物に多く含まれる。漢字の「蓚」はタデ科のスイバを意味し、また中国語でも植物由来の「草酸」の名を持つ。タデ科(他にギシギシ、イタドリなど)、カタバミ科、アカザ科(アカザ、ホウレンソウなど)の植物には水溶性シュウ酸塩(シュウ酸水素ナトリウムなど)が、サトイモ科(サトイモ、ザゼンソウ、マムシグサなど)の植物には不溶性シュウ酸塩(シュウ酸カルシウムなど)が含まれる。ヤマノイモ科の植物の根菜から作るとろろが肌に付くと痒みを生じるのは、シュウ酸カルシウムの針状結晶が肌に刺さって刺激を受ける為である。 カルシウムイオンと強く結合する性質(劇性)があり、体内に入るとアシドーシスに傾いた血液中でカルシウムと結合して結石などを生じる。このため毒物及び劇物取締法により劇物(毒物ではない)に指定されている。 還元性があるため、滴定によく使われる。また、染料原料や漂白剤としても用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ベンゾイミダゾール (Benzimidazole) は分子式C7H6N2で表される有機化合物で、ベンゼン環とイミダゾール環が一辺を共有して結合した複素環式化合物である。自然界において最も重要なベンゾイミダゾール化合物は、N-リボシルジメチルベンゾイミダゾールであり、ビタミンB12ではコバルトが軸方向に配位している。 一般的にはとo-フェニレンジアミンの縮合によって作られる。 C6H4(NH2)2 + HC(OCH3)3 → C6H4N(NH)CH + 3 CH3OH ベンゾイミダゾール化合物は寄生虫駆除剤や殺菌剤として生産されている。これらはチューブリンに結合し微小管の重合を阻害する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    炭酸水素塩(たんさんすいそえん、hydrogencarbonate)または重炭酸塩(じゅうたんさんえん、Bicarbonate)は炭酸水素イオンを含む、水素塩(酸性塩)の一種である。リチウムを除くアルカリ金属塩、カドミウム塩、およびアンモニウム塩などが固体の結晶として単離されているが、アルカリ土類金属その他の炭酸水素塩は、これらの炭酸塩と過剰の二酸化炭素の反応により水溶液中でのみ存在し、固体として分離しない。 アルカリ金属塩も水溶液の加熱および、固体の200℃程度の加熱により分解して炭酸塩となる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    β-カロテン(ベータカロテン、ベータカロチン、β-carotene)は、植物に豊富に存在する赤橙色色素の一つ。両末端にβ環を持つ最も一般的なカロテンである。ビタミンAの前駆体(不活性型)である。テルペノイドの一つであり、水には溶けないが脂溶性は大きい。 分子構造はKarrerらによって推定された。自然界ではβ-カロテン-15,15'-モノオキシゲナーゼ(EC 1.14.99.36) の酵素反応を受ける。β-カロテノイドはゲラニルゲラニル二リン酸から生合成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    タファミジス(Tafamidis)は、成人のトランスチレチンアミロイドーシス(ATTR)の疾患進行を遅らせるために使用される医薬品である。本薬は、(FAC)および家族性アミロイドポリニューロパチー(FAP)といった遺伝性のATTRと、(wtATTR、以前は老人性全身性アミロイドーシスと呼ばれていた)の治療に使用される。本薬は、トランスチレチンというタンパク質の四次構造(4量体)を安定化させる事で効果を発揮する。ATTRでは、トランスチレチン4量体がバラバラになり、神経や心臓などの組織に害を及ぼす塊(アミロイド)を形成する。経口投与で用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カルバモイルリン酸(カルバモイルリンさん、Carbamoyl phosphate)とは、生化学的に重要なアニオンである。尿素回路では、オルニチンと反応してシトルリンにする反応に関わることで過剰な窒素の体外への排出を行っている。また、ピリミジンの生合成にも関わっている。 重炭酸塩とアンモニアとリン酸から、ATPを用いて作られる。合成は、カルバモイルリン酸シンターゼにより触媒され、以下のように進む。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アルドステロン (英語: Aldosterone) は、副腎皮質の球状帯から分泌されるホルモンである。鉱質コルチコイドの一種である。1953年、シンプソンとテートによって初めて単離された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    テトラブロモビスフェノールA(Tetrabromobisphenol A、TBBPA)は、臭素系難燃剤の一種である。市販されているものは黄色を呈するが、純粋なものは白色の固体である。難燃剤としては最も一般的なものの1つである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    GDP-マンノース-3,5-エピメラーゼ(GDP-mannose 3,5-epimerase、EC 5.1.3.18)は、以下の化学反応を触媒する酵素である。 GDP-マンノースGDP-L-ガラクトース 従って、この酵素の基質はのみ、生成物はのみである。 この酵素は異性化酵素、特に炭水化物及びその誘導体に作用するラセマーゼ、エピメラーゼに分類される。系統名は、GDP-マンノース-3,5-エピメラーゼ(GDP-mannose 3,5-epimerase)である。 この酵素は、アスコルビン酸及びアルダル酸の代謝に関与している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1,2,4-トリアゾール(1,2,4-Triazole)はトリアゾールと呼ばれるC2H3N3という分子式を持つ化合物の1つで、炭素原子2個と窒素原子1個からなるを持つ。1,2,4-トリアゾールは芳香族性を持つ複素環式化合物である。 フルコナゾールやイトラコナゾールなどの抗真菌薬の骨格となっている。 1,2,4-トリアゾールはイミドとアルキルヒドラジンからEinhorn-Brunner反応で、もしくはアミドとヒドラジドからPellizzari反応で合成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メチルマロン酸(メチルマロンさん、英: Methylmalonic acid)は、中央のCにメチル基が付加したマロン酸の誘導体であるジカルボン酸である。 メチルマロン酸に結合したCoAであるメチルマロニルCoAは、メチルマロニルCoAムターゼによりスクシニルCoAに変化する。この反応でビタミンB12が補因子として必要とされる。このようにしてメチルマロン酸はクレブス回路(クエン酸回路)に入り、補充反応の一端を担うことになる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ビンキュリン(vinculin)は、アダプタータンパク質(adaptor protein)の1つで、細胞接着の接着装置を構成する細胞膜裏打ちタンパク質の1つである。インテグリン (integrin) が細胞骨格(cytoskeleton)のアクチンフィラメント に結合するのを仲介し、細胞接着・伸展を制御する。ビンキュリンファミリー(vinculin family)を形成している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    APC(adenomatous polyposis coli)は、ヒトではAPC遺伝子によってコードされるタンパク質である。DP2.5(deleted in polyposis 2.5)としても知られる。APCタンパク質はβ-カテニンの濃度を負に制御する調節因子であり、細胞接着に関与すると相互作用する。APC遺伝子の変異は大腸がんにつながる可能性がある。 APCはがん抑制遺伝子に分類される。がん抑制遺伝子は、癌性腫瘍につながる可能性のある、無制御な細胞増殖を防ぐ。APC遺伝子から産生されるタンパク質は、細胞の腫瘍への成長が決定されるいくつかの細胞過程で重要な役割を果たしている。APCタンパク質は、どの頻度で細胞分裂を行うか、組織内で他の細胞とどのように接着するか、細胞がどのように極性化するか、三次元構造への形態変化、また細胞が組織内をまたは組織から離れて移動するかどうかの制御を助けている。このタンパク質は細胞分裂の際の染色体数の保証も助ける。APCタンパク質は主に他のタンパク質、特に細胞接着やシグナル伝達に関与するタンパク質のとの結合によってこれらの役割をこなしている。特に、APCタンパク質によるβ-カテニンの制御は重要である(Wntシグナル経路を参照)。β-カテニンの調節によって、細胞分裂促進遺伝子の高頻度での活性化が防がれ、細胞の過剰増殖が防止されている。 ヒトのAPC遺伝子はの長腕(q)のバンドq22.2(5q22.2)に位置している。APC遺伝子はIRESを含んでいることが示されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ペンタン(pentane)とは、炭素数5つの直鎖状のアルカンである。天然ガスや石油エーテル、ガソリン等に含まれている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロルギリン(Clorgiline)は、不可逆でA選択的なモノアミン酸化酵素阻害薬で、科学研究用途に用いられる。構造的にパルギリンと関連する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キナリザリン (quinalizarin) または、1,2,5,8-テトラヒドロキシアントラキノン (1,2,5,8-tetrahydroxyanthraquinone) は、化学式がC14H8O6の有機化合物である。テトラヒドロキシアントラキノンの異性体のうちの一つで、4つの水素原子がヒドロキシル基に置換したアントラキノン誘導体である。 キナリザリンは、プロテインキナーゼのCK2の阻害剤で、エモジンよりも強力かつ選択的である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    バルプロ酸ナトリウム(バルプロさんナトリウム、英語: Sodium valproate、略称: VPA)とは、2-プロピルペンタン酸のナトリウム塩である。すなわち、バルプロ酸とは2-プロピルペンタン酸の慣用名である。 バルプロ酸は特異な匂いを有する。これをナトリウム塩にしたために水溶性が向上するため、水に溶け易い。体内に吸収されたバルプロ酸は、を阻害するため、におけるGABAの量を増加させて、薬理作用を発揮するとされる。ただし、バルプロ酸には他にも生理活性を有する。 バルプロ酸ナトリウムは抗てんかん薬の1つとして利用される。世界保健機関のWHOエッセンシャル・ドラッグ・リストの中にも収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒドロキシメチルグルタリルCoAレダクターゼ(hydroxymethylglutaryl-CoA reductase, HMG-CoA reductase, HMGR)または3-ヒドロキシ-3-メチルグルタリルCoAレダクターゼ(3-hydroxy-3-methyl-glutaryl-CoA reductase)は、コレステロールや他のイソプレノイドを合成するメバロン酸経路の律速酵素の一つである。この酵素には、ヒドロキシメチルグルタリルCoAレダクターゼ (NADPH)(EC 1.1.1.34)とヒドロキシメチルグルタリルCoAレダクターゼ(EC 1.1.1.88)の2種が存在し、前者は補酵素としてNADP、後者はNADが使われる。 この酵素の阻害剤はスタチンとして知られ、コレステロール降下剤として広く用いられている。 HMG-CoAレダクターゼは小胞体の膜に固定されており、7個の膜貫通ドメインを持つと長く考えられ、その活性点は細胞質基質中のカルボキシ末端ドメインに位置する。より最新の研究では、8個の膜貫通ドメインを含むことが証明されている。 ヒトではHMG-CoAレダクターゼの遺伝子は5番染色体の長腕(5q13.3-14)に位置する。この酵素はメバロン酸経路をもつ生物に普遍的に存在する。動物、植物を含む大部分の真核生物、そして一部のバクテリアにも存在している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インスリン様成長因子1(インスリンようせいちょういんし1、英: Insulin-like growth factor 1、略称: IGF-1、IGF-I)は、インスリンに類似した分子構造を持つホルモンである。小児の成長に重要な役割を果たし、成人においても同化作用を有する。ソマトメジンC(somatomedin C)とも呼ばれる。 IGF-1はヒトではIGF1遺伝子にコードされるタンパク質である。IGF-1は70アミノ酸からなる1本鎖ポリペプチドで、分子内に3つのジスルフィド結合を有する。IGF-1の分子量は7649である。 IGF-1の合成アナログであるは、成長障害の子供の治療に利用されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ノルアドレナリン(独: Noradrenalin、英: noradrenaline)は、化学式C8H11NO3のカテコールアミンにしてフェネチルアミンである。米国ではノルエピネフリン(norepinephrine)と称される。集中治療室や全身麻酔下手術において、重症患者の血圧を維持する上では不可欠の薬剤である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シルデナフィル(Sildenafil)は、勃起不全 (ED、男性機能不全)、および肺動脈性肺高血圧症の治療薬である。としてはファイザーのバイアグラ(Viagra) が商品名(商標)として、肺動脈性高血圧症の治療薬としてはレバチオ(Revatio)が商品名として用いられているほか、ファイザーの日本での特許切れにより、各社からの後発医薬品(ジェネリック医薬品)も存在する。投与はいずれもクエン酸塩の形態で経口にて行われる。 日本では1999年から製造と自費購入のみ認められてきたが、2022年2月に不妊治療で使われる医薬品16品を保険適用とすることが決まり、同年4月から早発排卵防止薬の「」や「」、と共に、処方許可要件を満たした医療機関から「勃起障害による男性不妊」と診断された上で不妊治療での用途に限り、バイアグラとシアリスが診療報酬適応になった。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    テトラメチルアンモニウム(Tetramethylammonium,TMA)またはテトラミンは、構造式(CH3)4N+(Me4N+)で表される最も単純な第四級アンモニウムカチオンである。中心の窒素原子に4つのメチル基が結合しており、ネオペンタンと等電子的である。正電荷を帯びており、対イオンと結合した状態でのみ単離される。一般的な塩としては、塩化テトラメチルアンモニウム、水酸化テトラメチルアンモニウム等がある。テトラメチルアンモニウム塩は、化学合成に使用され、薬理学的研究に広く用いられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセチルCoA (アセチルコエンザイムエー、アセチルコエー、Acetyl-CoA)は、アセチル補酵素Aの略で、化学式がC23H38P3N7O17Sで表される分子量が809.572 g/mol の有機化合物である。補酵素Aの末端のチオール基が酢酸とチオエステル結合したもので、主としてβ酸化やクエン酸回路、メバロン酸経路でみられる。メバロン酸経路では、テルペノイドは三分子のアセチルCoAを原料として合成される。 ヒトの体内では、消費されない過剰のアセチルCoAは、脂肪酸生合成の原料となり、中性脂肪を生成する(脂肪酸の合成の記事を参照)。そのため、アセチルCoAの代謝を抑制することで動脈硬化、高脂血症を防ぐ研究が進行中である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チオグリコール酸(チオグリコールさん、thioglycolic acid: TGA)とは、別名メルカプト酢酸とも呼ばれているカルボン酸の一種で、激しい悪臭と刺激臭を示す無色の液体。空気中で容易に酸化してジスルフィド(HO2CH2S-SCH2CO2H)を形成する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エスシタロプラム (Escitalopram) とは、選択的セロトニン再取り込み阻害薬 (SSRI) と呼ばれる抗うつ薬の一つである。レクサプロの商品名で販売されている。日本では2011年4月より販売されている。 エスシタロプラムは、アメリカ合衆国では90年代からあるSSRIのシタロプラムの光学異性体のうちのS体である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセタゾラミド (Acetazolamide) は、の一種である。錠剤、粉末、注射剤があり、商品名はダイアモックス(三和化学研究所)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スペクチノマイシン(Spectinomycin)とは真正細菌のStreptomyces spectabilis によって産生されるアミノグリコシド系抗生物質であり、淋菌感染症の治療に用いられる。塩酸塩がトロビシンとして商品化されている。臀部筋肉内注射で用いられる。 WHO必須医薬品モデル・リストに収載されている。 スペクチノマイシンは1961年に発見された。日本では1978年5月に承認された。米国ではトロビシンは2001年に供給が中止された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    糖質コルチコイド受容体またはグルココルチコイド受容体 (Glucocorticoid Receptor; GR) あるいはNR3C1(nuclear receptor subfamily 3, group C, member 1)はステロイド受容体(核内受容体)スーパーファミリーに属する分子である。リガンド非結合時においては細胞質に優位に存在する。ステロイドホルモンであるヒドロコルチゾンに対する受容体として働く一方、リガンド依存的に核内移行して転写因子としても働く。GRにはGRαとGRβの2つのスプライシングバリアントが存在する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピペリジン(英語: Piperidine)は、有機化合物の1種で、6員環構造を持つ複素環式アミンである。胡椒の辛味成分ピペリンの構造中に存在し、胡椒(Piper)にちなんで名付けられた。ヘキサヒドロピリジン、ペンタメチレンイミンとも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リバーロキサバン(Rivaroxaban)は経口抗凝固薬の一つである。最初に開発されたである。商品名イグザレルト。消化管からの吸収率が高く、投与4時間後に第Xa因子の阻害効果が最大となり、効果は8〜12時間持続する。しかし第Xa活性は24時間以内では回復しないので、1日1回投与で用いられる。開発コードBAY 59-7939。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オクタン (octane) は炭素を8個持つ飽和炭化水素の呼称である。石油(あるいはそれを分留したガソリン)中に含まれる。18種類の構造異性体が存在し、立体異性体までを考慮すると24種類になる。 IUPAC命名法によるオクタンは直鎖状 (CH3(CH2)6CH3) のn-オクタン(ノルマルオクタン、n-octane)であり、その融点は −60 ℃、沸点は 125 ℃。広義のオクタンは、C8H18 の分子式で表せるアルカンの各構造異性体をさす。 構造異性体のうち、3,4-ジメチルヘキサンはメソ体を持つ最小のアルカンである。2,2,4-トリメチルペンタン(イソオクタン)はガソリンのオクタン価の測定基準として使用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウンデカン (Undecane) は、アルカン。ヘンデカンと呼ばれることもある。159 種類の構造異性体が存在する。可燃性・揮発性があり、常温常圧で無色の液体。CAS登録番号は [1120-21-4]。 ダニの一種 (Caloglyphus rodriguezi) では、ウンデカンをフェロモンとして利用している。ほか、昆虫界、植物界に散見する物質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    17-ヒドロキシプロゲステロン(17-Hydroxyprogesterone、17OHP)は、糖質コルチコイドと性ホルモンの合成過程において生産される21炭素のステロイドホルモンである。 ホルモンとして、17-ヒドロキシプロゲステロンもプロゲステロン受容体と相互作用する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    BRCA1(breast cancer susceptibility gene I、乳がん感受性遺伝子I)とは、がん抑制遺伝子のひとつ。BRCA1遺伝子の変異により、遺伝子不安定性を生じ、最終的に乳癌や卵巣癌を引き起こす()。BRCA1の転写産物であるBRCA1タンパク質は他の多数の腫瘍抑制因子とともに核内で大きな複合体を形成し、相同性による遺伝子の修復に関わっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アクリル酸(—さん、acrylic acid)は、化学式が CH2=CHCOOH の、もっとも簡単な不飽和カルボン酸である。IUPAC命名法では、2-プロペン酸(2-propenoic acid)と表される。融点 12 ℃、沸点 141.6 ℃の無色透明の液体で、特有の刺激臭を有する。CAS登録番号は[79-10-7]。酸解離定数(pKa)は4.25、粘度は1.3 mPa s(20℃)。 水、アルコール、エーテル、クロロホルムと混和する。 アクリル酸の工業的な合成法のひとつとしては、プロピレンの二段階酸化が挙げられる。プロピレンを金属触媒存在下に酸素で酸化してアクロレインとし、さらにもう一段階の酸化によりアクリル酸とする。一段目の酸化反応は、触媒表面におけるプロピレンのアリル位水素の引き抜きと格子酸素の挿入等を経て、アクロレインが生成して完了するとされ、触媒は Bi-Mo に各種金属が添加された複合金属酸化物が用いられている。二段目の酸化反応は、アクロレインのアルデヒド基からの水素引き抜きと酸素挿入によるアクリル酸への転換反応であり、触媒はMo-V に各種金属が添加された複合金属酸化物が用いられている。 アクリル酸は適当な重合開始剤、あるいは酸素などの作用により容易に重合し、(PAA)を与える。この重合体はカルボキシル基を多数持つために非常に親水性が高い。さらに架橋を加えて網目状としたポリマーは、ナトリウム塩の形とすると高吸水性ゲルとして優れた性能を示すことから、紙おむつ用などに用いられる。 アクリル酸をメチルエステルとしたアクリル酸メチル(methyl acrylate, MA)も、(PMA)などのポリマーの原料として重要である。 毒物及び劇物取締法により劇物に指定されている。また消防法による第4類危険物 第2石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シロマジン (Cyromazine) とは、トリアジン骨格を有する昆虫成長制御剤で、殺虫剤および殺ダニ剤として使用される。メラミンのシクロプロピル誘導体であり、幼虫の神経系に作用して、幼虫の脱皮阻害作用や蛹の変態阻害作用を示す。日本ではハモグリバエ類を対象として、1996年に非食用作物 (キク、ガーベラ) で、1999年には食用作物 (ナス、トマト、カボチャ、メロン等) で農薬登録された。 獣医学領域では、畜舎・鶏舎周辺のハエ駆除用殺虫剤として使われる。産卵鶏用のラーバデックスはハエ幼虫発育抑制剤だが、餌に混ぜて鶏に与えることで鶏糞に沸くウジを駆除するというユニークな用法 (フィードスルー) が特徴である。 従来は養鶏家が人手をかけて鶏糞に薬剤を散布していたが、多大な労力がかかるにもかかわらず散布ムラにより防除が不完全になるという問題があった。これに対し、ラーバデックスではいったん鶏に食べさせることで薬剤を糞中に均等に分散させるという戦略をとることにより、防除の確実性が上がるだけでなく、給餌とハエ防除が同時に行えるので養鶏家の労力が軽減されるという合理的なものになっている。 このほか、アクアリウムにおいてはイカリムシやチョウなど外部寄生虫に対する殺虫薬として用いられる(ただし日本では、魚類に対する動物用医薬品としては認可されていない)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ベンジルペニシリン(benzylpenicillin)は、最も質の高い()ペニシリンの一種である。一般的にはペニシリンGとして知られている。ペニシリンGは胃の塩酸に対して不安定であるため、通常非経口経路で投与される。非経口で投与されるため、フェノキシメチルペニシリン (Phenoxymethylpenicillin) よりも高い組織内濃度(つまり抗微生物活性)を達成可能である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ゾレドロン酸(Zoledronic acid)またはゾレドロネート(Zoledronate)は、ビスホスホネート系製剤の1つであり白色の結晶性化合物。経静脈投与で使用される。骨粗鬆症や、悪性腫瘍の合併症としての高カルシウム血症などの治療に用いられる。日本での商品はリクラストまたはゾメタ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    FAK(focal adhesion kinase、フォーカルアドヒージョンキナーゼ、焦点接着キナーゼ、接着斑キナーゼ)またはPTK2(protein tyrosine kinase 2)は、ヒトではPTK2遺伝子にコードされるタンパク質である。FAKは関連プロテインキナーゼであり、細胞接着(細胞が互いにまたは周囲の環境とどのように結合するか)や拡散過程(細胞がどのように移動するか)に関与している。FAKが遮断されると、がん細胞は移動性が低下し転移能が低下することが示されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リトナビル(Ritonavir、治験番号 ABT-538、略号RTV)は、抗レトロウイルス効果を持つの一つであり、ヒト免疫不全ウイルスやC型肝炎ウイルス感染症の治療に使用される医薬品である。ノービア、カレトラ(ロピナビルとの合剤)、ヴィキラックス(オムビタスビル、パリタプレビルとの合剤)の商品名でアッヴィから製造販売されている。 リトナビルはHAART療法に取り入れられている場合が多いが、抗ウイルス効果よりもむしろ他のプロテアーゼ阻害薬の分解抑制を期待して使用される。この阻害効果によって、他のプロテアーゼ阻害薬の血中濃度が上昇し、より少量の投与で薬効を期待することができる。この考え方の下でロピナビルとの合剤が開発されている。 オムビタスビルおよびパリタプレビルとの3剤合剤がC型肝炎の治療に用いられる。日本では、2022年2月10日に新型コロナウイルス感染症の治療薬として医薬品医療機器等法14条の3に基づき特例承認されたニルマトレルビル・リトナビル(商品名: パキロビッドパック)にもリトナビルが含まれる。 リトナビルはWHO必須医薬品モデル・リストに収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コビメチニブ(Cobimetinib、開発コードGDC-0973、XL-518)は抗がん剤として開発中のの一つである。BRAF阻害薬との併用でいくつかの癌の治療効果が期待されている。早期臨床試験の結果、ベムラフェニブとの併用によりBRAF V600変異陽性悪性黒色腫患者の無増悪生存期間をベムラフェニブ単剤より3.7ヶ月延長した。第III相臨床試験は2017年に完了する見込みである。2014年の臨床試験の結果を元に、米国および欧州で承認申請された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェニルピルビン酸(Phenylpyruvic acid)は、ピルビン酸の誘導体である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ドコサヘキサエン酸(ドコサヘキサエンさん、Docosahexaenoic acid、略称:DHA)は、不飽和脂肪酸のひとつで、僅かに黄色を呈する油状物質。6つの二重結合を含む22個の炭素鎖をもつカルボン酸 (22:6) の総称であるが、通常は生体にとって重要な 4, 7, 10, 13, 16, 19 位に全てシス型の二重結合をもつ、ω-3脂肪酸に分類される化合物を指し、エイコサペンタエン酸(EPA)やドコサペンタエン酸(DPA) とともに高度不飽和脂肪酸(PUFA) とも呼ばれている。必須脂肪酸の一つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリメトプリム(英: trimethoprim)とは、主に尿路感染症の予防や治療に使用されるの抗生物質(正確には合成抗菌薬)の一つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チオトロピウム臭化物(Tiotropium bromide)は長時間(24時間)作用型抗コリン性気管支拡張薬であり、慢性閉塞性肺疾患(COPD)の症状軽減または気管支喘息の慢性期治療に用いられる。液剤と専用の噴霧器を組み合わせて用いる場合と、カプセルに入れた粉末を専用の器具に装填して用いる場合とがある。商品名スピリーバ。オロダテロールとの合剤(商品名スピオルト)がCOPD治療薬として承認されている。。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フマリルアセトアセターゼまたはフマリルアセト酢酸加水分解酵素(Fumarylacetoacetate hydrolase)は、ヒトではFAH遺伝子でコードされる酵素である。 この酵素は、チロシン異化経路の最後の酵素である。FAH遺伝子の欠損や変異は、1型の遺伝性チロシン血症と関連する。 この酵素は、4-フマリルアセト酢酸のフマル酸とアセト酢酸への加水分解を触媒する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミグルスタット(Miglustat)は、海外ではゴーシェ病I型(GD1)、日本ではニーマン・ピック病C型の治療に用いられる医薬品である。商品名ブレーザベス。開発コードOGT 918。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    6-ベンジルアミノプリン(6-Benzylaminopurine、ベンジルアデニン、benzyl adenine、BAP)は、植物の成長を刺激する第一世代の合成サイトカイニンである。花を咲かせ、細胞分裂を促進することによって果実を豊富にする効果がある。また、植物の呼吸キナーゼを抑制する効果があり、ポストハーベスト農薬として使用できる。 6-ベンジルアミノプリンは植物生理学者のによって初めて合成・実験された物質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エリスロポエチン(英語: erythropoietin; 略称: EPO)とは、赤血球の産生を促進する造血因子の一つ(ホルモンともサイトカインとも)。分子量は約34000、165個のアミノ酸から構成されている。血液中のエリスロポエチン濃度は、貧血、多血症などの鑑別診断に用いられる。腎性貧血の治療に主に使用されているが、ドーピングにも使用され問題となっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キサンチンデヒドロゲナーゼ(xanthine dehydrogenase、XDH)は、ヒトではXDH遺伝子にコードされているタンパク質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ビオラキサンチン(Violaxanthin)は、橙色の天然のキサントフィル色素であり、パンジーなどの様々な植物に含まれている。ゼアキサンチンのエポキシド化によって合成される。食品添加物として、E番号E161eの着色料として用いられる。欧州連合やアメリカ合衆国では使用が承認されていないが、オーストラリアやニュージーランドでは承認されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    α-ケトイソ吉草酸(アルファ-ケトイソきっそうさん、α-Ketoisovaleric acid)は、アミノ酸のバリンの代謝中間体の一つ。IUPAC名は3-メチル-2-オキソブタン酸である。2-オキソ-3-メチルブタン酸とも呼ばれる。 α-ケトイソイソ吉草酸は、(EC 2.6.1.42)によってバリンから合成され、3-メチル-2-オキソブタン酸デヒドロゲナーゼ(EC 1.2.4.4)によってイソブチリルCoAに変換される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    二酸化炭素(にさんかたんそ、英: carbon dioxide)は、炭素の酸化物の一つで、化学式が と表される無機化合物である。化学式から「シーオーツー」と呼ばれる。地球温暖化対策の文脈などで、「カーボンフリー」「カーボンニュートラル」など「カーボン」が使われる事があるが、これは二酸化炭素由来の炭素を意味する。 二酸化炭素は温室効果を持ち、地球の気温を保つのに必要な温室効果ガスの一つである。しかし、濃度の上昇は地球温暖化の原因となる。 地球大気中の二酸化炭素をはじめ地球上で最も代表的な炭素の酸化物であり、炭素単体や有機化合物の燃焼によって容易に生じる。気体は炭酸ガス、固体はドライアイス、液体は液体二酸化炭素、水溶液は炭酸や炭酸水と呼ばれる。 多方面の産業で幅広く使われている()。日本では高圧ガス保安法容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。温室効果ガスの排出量を示すための換算指標でもあり、メタンや亜酸化窒素(一酸化二窒素)、フロンガスなどが変換される。日本では2014年度で13.6億トンが総排出量として算出された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カプトプリル(Captopril)とはアンジオテンシン変換酵素阻害薬の一つである。アンジオテンシン変換酵素(ACE)を抑制することにより血圧を低下させる。さらにアルドステロン分泌の抑制による利尿作用を有する。高血圧、鬱血性心不全の治療に使用される。カプトプリルは初のACE阻害薬であり、新規作用機序ならびに新規開発手法の2つの意味で革新的と云われる。副作用として肺のブラジキニン増加による空咳が生じる。商品名カプトリル。経口投与薬で、1日3回服用の錠剤と1日2回服用のカプセル剤がある。 構造としては(S )-プロリン(L-プロリン)のN 置換体である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ノルバリン(Norvaline)は、C5H11NO2の化学式を持つアミノ酸で、バリンの異性体である。しばしば合成的に作られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒドロキシプロリン(Hydroxyproline)は天然に存在する二級環状アミノ酸(かつてはイミノ酸とも呼ばれた)の一種である。略称HYP。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インドキシル硫酸(インドキシルりゅうさん、3-indoxylsulfuric acid)はインドールが硫酸化した有機化合物である。慣用名はインディゴの前駆体の配糖体と同じインディカンである。体内では、トリプトファン由来のインドールが肝臓で硫酸抱合されて合成される。尿毒症毒素の原因物質といわれている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アトラジン(Atrazine, 2-chloro-4-(ethylamine)-6-(isopropylamine)-s-triazine)はs-トリアジン環を持つ有機化合物。欧州連合では使用が禁じられているが、世界で最も多く使われる除草剤の一つ。「アトラジン」の名称以外にも商品名で呼ばれることも多い(日本ではシンジェンタから商品名「ゲザプリム®」で販売されている)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サイクリン依存性キナーゼ1(サイクリンいぞんせいキナーゼ1、英: cyclin-dependent kinase 1、略称: CDK1)は高度に保存されたタンパク質で、セリン/スレオニンキナーゼとして機能する、細胞周期調節の主要因子である。 cell division cycle protein 2 homolog(cdc2 homolog)とも呼ばれる。出芽酵母Saccharomyces cerevsiae、分裂酵母Schizosaccharomyces pombeでよく研究されており、それぞれcdc28とcdc2遺伝子にコードされている。ヒトではCDK1はCDC2遺伝子にコードされている。CDK1はサイクリンと複合体を形成してさまざまな標的基質をリン酸化し(出芽酵母では75種類を超える基質が同定されている)、細胞周期を進行させる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    心房性ナトリウム利尿ペプチド(しんぼうせいナトリウムりにょうペプチド、英語名:Atrial Natriuretic Peptide、ANP )は、生理活性を持つアミノ酸28個からなるペプチドの1種であり、主に心房で生合成して貯蔵され、必要に応じて血液中に分泌され、ホルモンとして作用する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トランスコルチン(Transcortin)は、αグロブリンである。ヒトにおいては、SERPINA6遺伝子でコードされる。コルチコステロイド結合グロブリン(corticosteroid-binding globulin、CBG)やセルピンA6(serpin A6)とも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ブロモデオキシウリジン(英: bromodeoxyuridine、5-ブロモ-2'-デオキシウリジン(5-bromo-2'-deoxyuridine)、略称: BrdU)は、チミジンのアナログとなる合成ヌクレオシドである。BrdUは生体組織内で増殖中の細胞を検出するために一般的に利用されている。5-ブロモデオキシシチジンの脱アミノ化によってBrdUが形成される。 BrdUは、DNA複製中にチミジンに置き換わって新生DNA鎖に取り込まれる。そのため、BrdUが取り込まれた細胞は活発にDNA複製を行っていることを示している。BrdUが取り込まれたことを検出するためには、BrdU特異的抗体が利用される(免疫染色を参照)。抗体の結合にはDNAの変性が必要であり、通常は熱または酸による処理が行われる。 BrdUは複製に伴って娘細胞へと受け継がれる。BrdUは生体への注入後、2年以上にわたって検出可能であることが示されている。 BrdUはDNA複製時にチミジンと置き換わるため、突然変異を引き起こす可能性があり、そのためBrdUの使用は健康被害を引き起こす可能性がある。ラベリングのために使用される濃度では放射性も骨髄毒性も持たないため、がん細胞増殖のin vivo研究で広く用いられている。しかし、放射線増感剤として使用される濃度ではBrdUは骨髄抑制作用を持ち、この目的での使用は限られている。 BrdUは、チミジンのCH3基が臭素原子に置き換わった構造をしている。そのため、DNAまたはRNAを含む結晶のX線回折実験に利用することができる。臭素原子は因子としてはたらき、X線回折のisomorphous differenceを検出するのに十分な影響を与えることもできる。 BrdUは、DNAメチル化によって引き起こされた、ヒストンとの相互作用による遺伝子サイレンシングを解除する。 BrdUは、水生環境や土壌環境中の特定の炭素源に応答する微生物の同定のためにも利用される。環境試料の培養物に特定の炭素源を添加すると、それを利用できる微生物の成長が引き起こされる。こうした微生物は生育する際にDNAにBrdUを取り込む。その後、微生物叢のDNAを単離し、immunocaptureによってBrdUでラベルされたDNAを精製する。ラベルされたDNAをシーケンシングすることにより、添加された炭素源の分解に加わった微生物群を同定することができる。しかしながら、環境試料中に存在するすべての微生物が新規DNA合成によってBrdUを取り込むことができるかどうかは定かではない。そのため、炭素源に応答するもののこの技術では検出されない微生物が存在する可能性がある。さらに、この技術にはAやTに富むゲノムを持つ微生物を同定しやすいバイアスが存在する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    パパベリン(英:papaverine)とは血管拡張・鎮痙剤のひとつ。ケシ属の植物に含まれるイソキノリン系のアルカロイド。オピオイド作動性はない。 消化管平滑筋を弛緩させることにより、過度の消化管の緊張による腹痛を緩解させる。パパベリンは消化管平滑筋だけでなく全ての平滑筋を弛緩させるため、血栓症の治療にも使用される。副作用として多汗症や肺炎などが報告され、特に健康食品として食されるの大量摂取による肺炎(閉塞性細気管支炎)では、その主要因として考えられているが、国立医薬品食品衛生研究所等で検査したところ検出されていない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    3-メチルピリジン(3-methylpyridine)あるいは、3-ピコリン(3-picoline)は、化学式3-CH3C5H4Nで表される有機化合物。無色の液体であり、製薬や農業などの分野で利用されるピリジン誘導体を合成する際の前駆体として用いられる。ピリジンと同様、強い不快臭を持っており、弱い塩基性を示す。 日本では、消防法による危険物(第四類 第二石油類 水溶性)に指定されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ペラミビル (Peramivir) はアメリカのバイオクリスト社 (BioCryst Pharmaceuticals) 開発のインフルエンザ用抗ウイルス薬である。日本での商品名は「ラピアクタ」。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロルゾキサゾン(英: chlorzoxazone)は、ベンゾオキサゾール系筋弛緩剤の1種であり、中枢神経系に作用することで筋弛緩をもたらす。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インダゾール(Indazole、別名:ベンズピラゾール、イソインダゾン)は2員環複素環式芳香族有機化合物の一つである。 インダゾール誘導体は様々な生物学的活性を有している。 インダゾール骨格は天然成分にはほとんど見られない。アルカロイドの一種(ニゲリシン(Nigericin)とは別)、ニゲグラニン(Nigeglanine)、(Nigellidine)に見られる。ニゲリシンはブラッククミン、ニオイクロタネソウ等と呼ばれる植物(学名:Nigella sativa L.)から単離された。ニゲグラニンは学名: freynと呼ばれる植物の抽出液から得られた。 で2H-インダゾールを合成できる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ブタン (butane, 英語発音: [ˈbjuːteɪn] ビューテイン) は、炭化水素の一種で、炭素4個が直鎖状に連なったアルカンである。n-ブタンとも呼ばれる。無色不快臭であり、常温・常圧で気体である。構造異性体としてイソブタン(2-メチルプロパン、iso-ブタン)があり、これらは異性体を持つアルカンでは最も小さい。可燃性物質であり、圧縮して液化した状態で運搬、利用される。天然には、石油や天然ガスの中に存在する。 1849年にエドワード・フランクランドによって発見された。名前の由来は酪酸の"but"にギリシア語における数字の末尾"ane"をつけたもの。 n-ブタンの爆発限界は 1.9~8.5vol%(空気中)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミリスチン酸(ミリスチンさん、myristic acid)は、動物性・植物性脂肪中に広く見られる飽和脂肪酸である。ヤシ油、パーム油に多い。を持ち、それぞれ 53.8 °Cと約 58 °C である。IUPAC系統名はテトラデカン酸(tetradecanoic acid)。 ミリスチン酸のナトリウム塩であるミリスチン酸ナトリウムは石鹸の中で特に起泡性がよく、改質剤として石鹸やシャンプーに添加される。また乳化剤としてローションなどにも用いられる。 亜鉛塩のミリスチン酸亜鉛は化粧品の潤滑剤、増粘剤、安定剤として口紅、アイシャドウ、ファンデーションなどに用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    N,N-ジメチルホルムアミド (N,N-dimethylformamide, 略称DMF)は、有機化合物の一種。常温では無色で微かにアミン臭(純粋な場合は無臭)の液体。石油系炭化水素とは混合しないが、それ以外のほとんどの有機溶媒や水と任意の割合で混合する。 引火性液体であり、日本では消防法により危険物第4類(第2石油類)に指定されている。作業環境の管理濃度は、10ppmである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1,4-ジオキサン (1,4-dioxane) は、常圧常温において無色透明の液体の有機化合物である。分子式は C4H8O2 である。ジエチルエーテルの臭気を弱くしたような臭気を持ち、非プロトン性溶媒としてよく用いられる。構造異性体に1,2-ジオキサンと1,3-ジオキサンがある。 1,4-ジオキサンはエーテル類に分類され、2つの酸素原子の両方がエーテル基を形成している。4つの炭素原子と1つの酸素原子を有するジエチルエーテルより極性が高い。このためジエチルエーテルは水に溶けにくい一方、1,4-ジオキサンは水と混合しやすく、吸湿性もある。有機溶媒としてしばしば用いられる他、塩素系溶剤の安定化剤としても用いられることがある。しかしグリニャール反応では、シュレンク平衡を不活性側に偏らせてしまうため、ほとんど用いられない。また重水を用いたNMRでは、化学シフトの内部基準物質としても用いられる。 なおダイオキシン (dioxin) も2つのエーテル基を有するが、ジオキサン (dioxane) とは全く特性の異なる化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アデニロコハク酸リアーゼ(adenylosuccinate lyase, ADSL)はプリン代謝のうちイノシン酸およびアデニル酸の合成に関わる酵素で、以下の2つの化学反応を触媒する。 1. * フマル酸 + AMP 2. * フマル酸 +

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ザラゴジン酸(ザラゴジンさん、Zaragozic acid)類は、真菌によって生産される天然物の一群である。最初に特徴付けられたザラゴジン酸A、B、およびCは未同定の培養物、 intermedia、およびからそれぞれ単離された。化合物名は菌がスペイン、サラゴサ(Zaragoza)のハロン川から取られた水試料に由来することによる。ザラゴジン酸類は独特の4,8-ジオキサビシクロ[3.2.1]オクタン母核を有し、1-アルキル側鎖と6アシル側鎖に違いがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キヌレニナーゼ(英: KYNU)は、トリプトファンを代謝する経路の一つであるキヌレニン経路で働く加水分解酵素。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    PTEN(ピーテン、Phosphatase and Tensin Homolog Deleted from Chromosome 10)とはイノシトールリン脂質であるホスファチジルイノシトール-3,4,5-三リン酸(PtdIns(3,4,5)P3)の脱リン酸化反応を触媒する酵素である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アデニン (adenine) は核酸を構成する5種類の主な塩基のうちのひとつで、生体内に広く分布する有機化合物である。 プリン骨格は糖ともアミノ酸とも異なる独特の形状をしているにもかかわらず、アデニン、グアニンの他、コーヒーや茶に含まれるカフェイン、ココアに含まれるテオブロミン、緑茶に含まれるテオフィリンなどを構成し、また最近ではプリン体をカットしたビールなども販売されるほどありふれた有機物である。アデニンはシアン化水素とアンモニアを混合して加熱するだけで合成されるため、原始の地球でもありふれた有機物であったと考えられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プラスミン(plasmin, EC 3.4.21.7)は線溶系に属するタンパク質分解酵素(プロテアーゼ)の一種。セリンプロテアーゼ、エンドペプチダーゼに分類される。 反応はフィブリンやフィブリノーゲンを分解して血栓を分解するというものである。 プラスミンは通常、前駆体であるプラスミノーゲンの形で血漿に含まれており、プラスミノーゲンアクチベーター(ウロキナーゼ、組織プラスミノーゲンアクチベータ、ストレプトキナーゼ)によって活性化される。活性化はプラスミノーゲンのArg-Val間のペプチド結合の分解によって起きる。ただし、凝固系が働いているときはプラスミノーゲンアクチベータインヒビターによってプラスミノーゲンアクチベータが不活化している。プラスミンはプラスミンインヒビターと呼ばれるタンパク質によって阻害を受け、必要なときだけその作用を発揮するようになっている。 ヒトプラスミノーゲンの遺伝子はのq26–27に存在する。糖タンパクで、分子量は700kD程度。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    CDKN1B (Cyclin-dependent kinase inhibitor 1B) は、サイクリン依存キナーゼ阻害タンパク質1Bであり、p27とも言い、ヒトのCDKN1B遺伝子にコード化されているタンパク質である。CDKN1Bは、サイクリン依存キナーゼ(CDK)阻害タンパク質のCip/Kipファミリーに属するタンパク質をコード化している。このコード化されたタンパク質は、サイクリンE-CDK2またはサイクリンD-CDK4複合体に結び付き、それらの活動を妨げ、それゆえ、G1において細胞周期の進行を調整している。CDKN1Bは細胞分裂の周期を停止またはスローダウンさせる大きな役割があるため、CDKN1Bは細胞周期の阻害タンパク質と呼ばれている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デカン(Decane)はアルカン。75種の構造異性体が存在する。石油やそれを分留した灯油に含まれる。可燃性、揮発性があり、常温常圧で無色の液体。他のアルカンと同様、極性をもたない。 0.0238 N·m−1の表面張力を有する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ε-アミノカプロン酸(イプシロンあみのかぷろんさん)は人工合成されたアミノ酸で、止血剤として用いられる。岡本歌子により開発された。 経口、静注のほか、点眼でも用いられうる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トロンビン(Thrombin、第IIa因子とも)は、血液の凝固に関わる酵素(セリンプロテアーゼ)の一種。EC番号はEC 3.4.21.5であり、フィブリノーゲンをフィブリンにする反応を触媒する。ヒトの場合、11番染色体のp11-q12に存在するF2遺伝子にコードされる。 トロンビンは血液中に存在するプロトロンビン(第II因子)が第V因子によって活性化されることによって生まれる。第V因子、第VIII因子及び第IX因子を活性化させるのでの中核的な存在であり、血液凝固を阻止する際にはこの酵素の働きを止めることが重要である。 また血小板を活性化することでを促進する機能もある。この場合には血小板表面の受容体(Gタンパク質共役型受容体)を介して働く。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ビトロネクチン(英:vitronectin)は、血液や細胞外マトリックスに存在する糖タンパク質で、細胞接着・細胞進展を促す細胞接着分子である。組織形成維持、血液凝固線溶系、免疫補体系、組織修復、癌転移、神経細胞の分化や突起伸長で重要なはたらきをする。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スボレキサント(英:Suvorexant)は、選択的デュアルオレキシン受容体拮抗薬で、不眠症に対する効能・効果を有する睡眠薬。商品名ベルソムラとして販売され、開発はメルク・アンド・カンパニー(MSD)。開発名MK-4305で、3つの第III相臨床試験を完了し、アメリカ合衆国で2014年8月13日にアメリカ食品医薬品局(FDA)によって販売が承認され、日本では2014年9月26日に承認された。 アメリカ合衆国の規制物質法におけるスケジュールIVに指定されている。日本では習慣性医薬品に指定される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オロチジン5'-一リン酸(オロチジン5'-いちリンさん、英: Orotidine 5'-monophosphate)は、オロチジル酸とも呼ばれており、ウリジン一リン酸の生合成の最終中間体であるピリミジンヌクレオチドである。 ヒトにおいてはウリジン一リン酸合成酵素がオロチジン5'-一リン酸をウリジン一リン酸に変換する。もしウリジン一リン酸の合成に障害が起こるとオロト酸尿症が発症する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メチルアミン (methylamine) は、最も基本的な第一級アミン。メタンアミン、アミノメタンとも呼ばれる。 強い臭気を有する無色の気体で、20 ℃ で 108 g/100 mL と、水に非常に溶けやすい。引火性が強く、空気との混合気体は爆発しやすい。通常、塩酸との塩である塩酸メチルアンモニウムの状態で市販されることが多く、メーカーによっては、ガスボンベ、水溶液、メタノール溶液として販売する場合もある。 様々な有機化合物の原料となる物質である。多くのアミンと同じく N 上に孤立電子対を持つため塩基性を示し、求核剤としてハロゲン化アルキルやカルボン酸誘導体等と反応し、置換アミン、アンモニウム塩あるいは酸アミドを生成する。 日本では毒物及び劇物取締法によって劇物に指定されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コレステロールモノオキシゲナーゼ (側鎖開裂)(cholesterol monooxygenase (side-chain-cleaving))は、ステロイドホルモン生合成酵素の一つで、次の化学反応を触媒する酸化還元酵素である。 コレステロール + 還元型アドレナルフェレドキシン + O2 プレグネノロン + 4-メチルペンタナール + 酸化型アドレナルフェレドキシン + H2O この酵素の基質はコレステロール、還元型、O2で、生成物はプレグネノロン、、酸化型アドレナルフェレドキシンとH2Oである。補因子としてヘムを用いる。 組織名はcholesterol,reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving)で、別名にcholesterol desmolase、cytochrome P-450scc、desmolase, steroid 20-22、C27-side chain cleavage enzyme、cholesterol 20-22-desmolase、cholesterol C20-22 desmolase、cholesterol side-chain cleavage enzyme、cholesterol side-chain-cleaving enzyme、enzymes, cholesterol side-chain-cleaving、steroid 20-22 desmolase、steroid 20-22-lyaseがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アスタキサンチン (astaxanthin, astaxanthine [æstəˈzænθɪn] アスタザンスィン) は、1938年にリヒャルト・クーンらにより発見された色素物質である。β-カロテンやリコピンなどと同じくカロテノイドの一種で、キサントフィル類に分類される。ザリガニにより構成される属のアスタクス属より名付けられた。IUPAC名は 3,3'-ジヒドロキシ-β,β-カロテン-4,4'-ジオン。尚、キサントフィルの由来はギリシャ語の "yellow flowers" であるが、アスタキサンチンの色は赤色である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キスカル酸(キスカルさん、quisqualic acid)は、AMPA型グルタミン酸受容体及びのアゴニストである。興奮毒性を示し、神経科学では脳や脊髄の神経細胞を選択的に破壊するために用いられる。東北大学の竹本常松らにより駆虫薬として用いられる熱帯アジア原産の(Combretum indicum)の種子から発見され、シクンシの当時の学名(Quisqualis indica)にちなみ命名された。 アメリカ合衆国農務省のによる研究では、ゼラニウムの花弁にも存在することが示され、またマメコガネの麻痺の原因になっていることが明らかとなった。キスカル酸は、昆虫のやほ乳類の中枢神経系で神経伝達物質として働くL-グルタミン酸を模倣していると考えられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    FOXO3(forkhead box O3)またはFOXO3aは、ヒトではFOXO3遺伝子にコードされるタンパク質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ベキサロテン(Bexarotene)は(CTCL)の治療に用いられる化学療法剤の一つである。第三世代のレチノイドに分類される。商品名タルグレチン。アメリカのFDAに1999年に、欧州医薬品庁(EMA)に2001年に、日本のPMDAに2016年に承認された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    レボドパまたはL-ドパ(正式名称:L-3,4-ジヒドロキシフェニルアラニン、英語: L-3,4-dihydroxyphenylalanine)は、動物、植物の体内で生成される化学物質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カルシフェジオール(Calcifediol)は、カルシジオール(calcidiol)、25-ヒドロキシコレカルシフェロール(25-hydroxycholecalciferol)、25-ヒドロキシビタミンD(25-hydroxyvitamin D、略称25(OH)D)とも呼ばれており、肝臓でビタミンDをヒドロキシ化して作られるホルモン前駆物質である。カルシフェジオールは、副甲状腺ホルモンに加えて低カルシウム、低リン酸状態により活性化したカルシジオール-1-モノオキシゲナーゼ(1α-ヒドロキシ酵素、25(OH)D-1α-ヒドロキシラーゼ)によりビタミンDの活性型であるセコステロイドホルモンであるカルシトリオール(Calcitriol、(1,25-(OH)2D3))に変換される。カルシジオールは、腎臓で炭素番号24の位置にヒドロキシ化されて24-ヒドロキシカルシジオールにも変換される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ユグロン(juglone、ジュグロン)または5-ヒドロキシ-1,4-ナフタレンジオン(5-hydroxy-1,4-naphthalenedione)、5-ヒドロキシナフトキノン(5-hydroxynaphthoquinone)は、化学式がC10H6O3の有機化合物の1つである。食品産業では、C.I. Natural Brown 7、C.I. 75500とも呼ばれる。この他にもヌシン(nucin)、レジアニン(regianin)、NCI 2323、Oil Red BSという呼称が有る。 ユグロンは、クルミ科植物、特に (Juglans nigra) の葉、根、殻および樹皮で生成し、多くの植物に対して、毒性または成長阻害作用を及ぼす。ユグロンは、除草剤、染料、インク、食品および化粧品のカラーリング剤として使われる場合がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    酢酸フェニル(さくさんフェニル)とは有機化合物の一種で、酢酸とフェノールが脱水縮合した構造を持つエステルのこと。塩化アセチルとフェノールを反応させて得る。フェノール臭を示す無色の液体。消防法による第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジアミノピメリン酸(Diaminopimelic acid)は、リシンのε-カルボキシ誘導体であるアミノ酸である。 ジアミノピメリン酸は、ある種の細菌の特定の細胞壁に特徴的なものである。グラム陰性細菌の細胞壁を構成するNAM-NAG鎖のペプチド結合で良く見られる。これが十分に存在すると通常の成長を示すが、欠乏すると成長はするものの、細胞壁の新しいプロテオグリカンを形成できなくなる。 また、の付着点でもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    安息香酸(あんそくこうさん、英: benzoic acid、独: Benzoesäure)は芳香族化合物であり、特に芳香族カルボン酸である。ベンゼンの水素原子1個がカルボキシ基に置換された構造を持つ。水に溶かすと酸性を示し、酸解離定数pKa は 4.21 である。 安息香酸のカルボキシ基に対してオルト位の水素原子がヒドロキシ基に置換されると、サリチル酸となる。 抗菌・静菌作用があるので、水溶性のナトリウム塩、安息香酸ナトリウム などは清涼飲料等の保存料として添加されている。の一種。殺菌作用はない(既に細菌などの増殖したものに対しては無効)。旧厚生省は安息香酸を天然に存在しない添加物に分類している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    硫化水素(りゅうかすいそ、英: hydrogen sulfide)は、化学式 H2S をもつ硫黄と水素の無機化合物で、カルコゲン化水素の一つ、スルファン。無色の気体で、腐卵臭を持つ。空気に対する比重は1.1905である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シアン化物(シアンかぶつ、英: cyanide)とは、シアン化物イオン (CN-) をアニオンとして持つ塩を指す呼称。シアン化合物(シアンかごうぶつ)、青酸化合物(せいさんかごうぶつ)、青酸塩(せいさんえん)、青化物(せいかぶつ)とも呼ばれる。代表例としてはシアン化ナトリウム (NaCN)、シアン化カリウム (KCN) など。 広義には、配位子としてシアン (CN-) を持つ錯体(例: フェリシアン化カリウム、K3[Fe(CN)6])、シアノ基が共有結合で結びついた無機化合物(例: シアノ水素化ホウ素ナトリウム、NaBH3CN)もシアン化物に含まれる。 それぞれの化合物の化学的性質は、シアン化物イオンやシアノ基が他の部分とどのように結びついているかにより大きく異なる。 有機化合物のうちニトリル類(例: アセトニトリル、別名: シアン化メチル、CH3CN)は「シアン化~」と呼ばれることがあるが、性質は大きく異なる。 シアン化合物は、一般に人体に有毒であり、ごく少量で死に至る。このことから、しばしば、シアン化合物による中毒死を目的として、毒殺や自殺に利用されてきた経緯がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    亜硝酸塩(あしょうさんえん、Nitrite)は、亜硝酸イオン NO2- をもつ塩である。英語の nitrite は、亜硝酸塩、亜硝酸イオン、亜硝酸エステルのいずれか指す。 亜硝酸イオンは錯体を形成する場合にアンビデントな配位子して働き、窒素原子で配位する場合はニトロ、酸素原子で配位する場合はニトリトと呼ばれる。 代表的な亜硝酸塩に亜硝酸ナトリウムや亜硝酸カリウムがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピリドキサール (pyridoxal) は、ビタミンB群の中のビタミンB6に分類される化合物の1つである。生体内ではピリドキサールキナーゼにより、補酵素形のピリドキサール-5'-リン酸に変換される。ピリドキサール-5'-リン酸が不要になると、脱リン酸化されてピリドキサールに戻され、さらにによって酸化されてに変換され、主に腎臓から尿中へと排泄される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アデノシン-3',5'-ビスリン酸(Adenosine 3',5'-bisphosphate)は、リボース環の異なる炭素に2つのリン酸が結合したアデノシンヌクレオチドである。リボースの5'炭素に二リン酸が結合したアデノシン二リン酸とは異なるヌクレオチドである。 アデノシン-3',5'-ビスリン酸は、補酵素の3'-ホスホアデノシン-5'-ホスホ硫酸からの硫酸基の供与によるの酵素反応生成物として生じる。この生成物は、3'(2'),5'-ビスリン酸ヌクレオチダーゼによって加水分解され、アデノシン一リン酸(AMP)を与える。生じたAMPはアデノシン三リン酸(ATP)にリサイクルされる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヘスペレチン(Hesperetin)は、フラバノンを骨格に持つO-メチル化フラボノイドの一種である。エリオジクチオールの4'位の水酸基(-OH)をメトキシ基(-OCH3)に置換した構造をもつ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ドルテグラビル(Dolutegravir、DTG)は、テビケイ(Tivicay)という商品名で販売されている、HIV/AIDSを治療する為に他剤と併用される抗レトロウイルス薬である。また、曝露後のHIV感染を予防するために、曝露後予防の一環として使用されることもある。投与方法は、経口投与である。 一般的な副作用には、睡眠障害、疲労感、下痢、高血糖、頭痛などがある。重大な副作用としては、アレルギー反応や肝機能障害などがある。妊娠中の使用は、胎児に害を及ぼす可能性があるという暫定的な懸念がある。また、授乳中の使用が安全かどうかは不明である。ドルテグラビルは、であり、ウイルスの複製に必要なHIVインテグラーゼの機能を阻害する。 ドルテグラビルは、2013年に米国で医療用医薬品として承認された。世界保健機関(WHO)の必須医薬品リストに掲載されている。また、アバカビルとラミブジンとの併用療法であるもある。2019年現在、世界保健機関(WHO)は、すべてのHIV感染者の第一選択薬および第二選択薬としてDTGを推奨している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    VHLタンパク質またはvon Hippel-Lindau腫瘍抑制因子(von Hippel-Lindau tumor suppressor)は、ヒトではVHL遺伝子にコードされるタンパク質である。VHL遺伝子の変異は、フォン・ヒッペル・リンドウ病(VHL病)と関係している。疾患名などと区別するため、pVHLと書かれることもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フィナステリド(Finasteride)は、アメリカメルク社が開発した抗アンドロゲン薬。2型5-α還元酵素を阻害して、男性ホルモンテストステロンがDHT(ジヒドロテストステロン)に転換されるのを抑制する。高用量(5mg/day)で前立腺肥大症・前立腺癌に対して抑制的に作用する。Proscar等の商品名で海外で販売されているが、日本では前立腺の治療薬としては未承認。 低用量(0.2mgまたは1mg/day)で、男性型脱毛症(AGA)に対して脱毛抑制効果を認め、プロペシア(Propecia)の商品名で多くの国で発売されている。プロペシアの日本での特許は2015年に切れており、各社から後発品が発売されている。2020年時点で、日本でフィナステリドを製造・販売している製薬会社は計10社存在する。フィナステリドは本来クリニックでしか入手できない治療薬であり、個人輸入や輸入代行の利用は推奨されない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フッ化ベリリウム(beryllium fluoride)は、組成式がBeF2の無機化合物である。白色の固体で、主に金属ベリリウムの製造に用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホルムアルデヒド (formaldehyde) は有機化合物の一種で、最も簡単なアルデヒド。酸化メチレンとも。IUPAC命名法で メタナール (methanal) と表される。本物質の水溶液はホルマリン。フェノール樹脂、メラミン樹脂、尿素樹脂などの原料としても広く用いられる。毒性が強く、建築基準法に制限値があるなど、規制対象でもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    セレコキシブ(Celecoxib, 日本における製品名:セレコックス)は、非ステロイド性消炎・鎮痛薬(英語: Non-steroidal anti-inflammatory Drugs:NSAIDs)であり、100mgと200mgの錠剤がある。セレコキシブは、COX-2を選択的に阻害することを目的にドラッグデザインされ、日本でCOX-2選択的阻害剤としてカテゴライズされている唯一の薬剤である。 商品名のセレコックスは、日本ではアステラス製薬が製造販売、ファイザーが販売提携を行っている。2020年6月に後発医薬品の発売が開始された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フィラグリン(Filaggrin)とは、表皮ので産生される塩基性タンパク質の1種である。フィラグリンのことを指して、ヒスチジン・リッチ・プロテインなどと呼ぶ場合もある。ヒトにおいて皮膚のバリア機能に欠かすことのできない角質層を形成するに当たり、フィラグリンはケラチンと共に重要な役割を担っている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    p53遺伝子(ピー53いでんし)とは、一つ一つの細胞内でDNA修復や細胞増殖停止、アポトーシスなどの細胞増殖サイクルの抑制を制御する機能を持ち、細胞ががん化したときアポトーシスを起こさせるとされる。この遺伝子による機能が不全となるとがんが起こると考えられている、いわゆる癌抑制遺伝子の一つ。 p53のpはタンパク質(protein)、53は分子量53,000を意味し、その遺伝子産物であるp53タンパク質(以下単にp53)は393個のアミノ酸から構成されている。この遺伝子は進化的に保存されており、昆虫や軟体動物にも存在している。ただしそれらのアミノ酸一次配列はかなり多様化している。またパラログとしてp63やp73もある。RB遺伝子とともによく知られている。 細胞が、がん化するためには複数の癌遺伝子と癌抑制遺伝子の変化が必要らしいことが分かっているが、p53遺伝子は悪性腫瘍(癌)において最も高頻度に異常が認められている。p53は、細胞の恒常性の維持やアポトーシス誘導といった重要な役割を持つことから「ゲノムの守護者 (The Guardian of the genome)」とも表現されるが、染色体構造が変化する機構と、それらの細胞内での働き、そしてそれらが生物にとってどのように大切なのかについてはよくわかっていない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピロカルピン(英:Pilocarpine)はアルカロイドの一種で、非選択的ムスカリン受容体刺激薬。ヒスチジン由来の化合物であり、アルカロイドとしては珍しいイミダゾール骨格を有する。有機溶媒への溶解性は高くない。医薬品としては塩酸ピロカルピンとして発売されている。 ムスカリン受容体を介して眼圧を低下させるため、点眼薬として緑内障の治療に用いられる。また、下記の作用から内服薬の形で口腔乾燥症の治療薬としても用いられている。 副交感神経末梢を興奮させるため、汗腺、唾液腺、涙腺の分泌を促進させ、瞳孔を縮小するなどの作用を起こす。この作用はアトロピンと拮抗することから、アトロピン中毒の治療にも用いられる(逆にピロカルピン中毒の場合はアトロピンが処方される)。 1875年、ブラジル原産のミカン科の植物ヤボランジ(Pilocarpus jaborandi)から発見・命名された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ペンタミジン(Pentamidine)はPneumocystis jirovecii (旧学名:Pneumocystis carinii )によるニューモシスチス肺炎(旧名:カリニ肺炎)(PCP)の治療薬である。PCPは重症間質性肺炎であり、HIV感染症の患者にしばしば見られる。ペンタミジンはステージIガンビアトリパノソーマ(西アフリカ睡眠病)の治療の主要薬剤でもある。商品名ベナンバックス。日本および米国で希少疾病用医薬品に指定されている。またWHO必須医薬品モデル・リストに収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スベリン酸(スベリンさん、suberic acid)は、化学式C6H12(COOH)2のジカルボン酸の一つ。コルク酸、オクタン二酸とも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ラルテグラビル(Raltegravir, RAL)は、商品名アイセントレス(Isentress)で販売されているHIV/AIDSの治療に用いられる抗レトロウイルス医薬品。 他の医薬品と併用され、また曝露後予防の一環として、曝露後の潜在的なHIV感染を予防するためにも使用される。投与法は経口である。 一般的な副作用には、睡眠障害、疲労感、吐き気、高血糖、頭痛などがあげられる。重度の副作用には、アレルギー反応によるスティーブンス・ジョンソン症候群、筋肉の破壊、肝臓の疾患などがあげられる。妊娠中または授乳中の患者への投与の安全性は不明確である。 ラルテグラビルは、に必要なHIVインテグラーゼの機能を阻害するである。 ラルテグラビルは、2007年に米国で医薬品として承認された。ラルテグラビルは世界保健機関の必須医薬品リストに収載されており、医療制度に必要とされる最も安全で効果的な医薬品である。 としてラミブジンと組み合わされたもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    PPARγ(ピーピーエイアールガンマ、Peroxisome Proliferator-Activated Receptor γ, NR1C3)とは核内受容体スーパーファミリーに属するタンパク質であり、転写因子としても機能する。「ペルオキシソーム増殖因子活性化受容体γ(ガンマ)」と和訳されることもある。PPARはα、β/δ、γの3種類のサブタイプが存在し、その中でもPPARγにはPPARγ1とγ2、γ3の少なくとも3種類のアイソフォームが存在することが知られている。選択的スプライシングの産物であるこれらのアイソフォームはそれぞれ発現や分子構造が異なる。PPARγは主に脂肪組織に分布して脂肪細胞分化などに関与するほか、マクロファージや血管内皮細胞などにも発現が見られる。インスリン抵抗性改善薬の標的分子でもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    α-ケトイソカプロン酸(アルファ-ケトイソカプロンさん、α-ketoisocaproic acid)は、ロイシンの代謝中間体の一つである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カダベリン (cadaverine) は化学式 H2N(CH2)5NH2 で表される構造を持つジアミンである。アミノ酸・リシンが脱炭酸することによって生成する。名称は「死体のような」を意味する英語形容詞 "cadaverous" に由来する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シキミ酸(シキミさん、shikimic acid)は環状ヒドロキシ酸。芳香族化合物が生合成される経路の重要な中間体。その名の通りシキミから発見されたが、ほとんどの植物でみられる。シキミ酸経路を構成する物質の一つ。がシキミ酸デヒドロゲナーゼ (EC1.1.1.25.) によって還元されて生成し、 (EC2.7.1.71) によってリン酸化され、になる。 最近では、インフルエンザの治療薬オセルタミビル(タミフル)の原料として用いられている。以前は、多段階の発酵法、多量の副生成物との分離といった課題があり、効率が悪かったが、コーヒー粕麹法により量産のめどがついた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オロト酸(オロトさん、Orotic acid)は、乳清から発見された複素芳香環化合物。またはオロット酸・オロチン酸・ウラシル6-カルボン酸とも呼ばれる。アルコール発酵成就残物からネズミの成長促進因子としても発見されたのでビタミンB13とも呼ばれるが、人間を含む多くの高等動物は生合成できるので必須ビタミンではない。化学式はC5H4N2O4、分子量は156.10、融点345-346℃の白色の固体。CAS登録番号は[65-86-1]。 有機化学的にはオキサロ酢酸モノエステルと尿素をメタノール中で縮合して合成される。 生化学的にはピリミジン塩基の生合成中間体で、ジヒドロオロト酸からジヒドロオロト酸デヒドロゲナーゼによって誘導され、によってオロチジン一リン酸となる。ピリミジンの代謝に問題があると尿中に排出され、オロト酸尿症となる。これは知的障害を伴う遺伝病である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エストリオール(英: Estriol, E3)は、エストロゲンの一種。母体の肝臓と胎盤、胎児の副腎を経て生成されるため、その血中濃度は胎児の生命状態の指標として用いられる。最終的には肝臓で薬物代謝酵素によって不活性化され、肝臓や小腸でその大半は硫酸抱合体やグルクロン酸となり、大部分は尿中に排出される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インターロイキン-6(英: Interleukin-6, 略称: IL-6)はT細胞やマクロファージ等の細胞により産生されるレクチンであり、液性免疫を制御するサイトカインの一つである。IL-6は1986年に相補的DNA(cDNA)がクローニングされ、以降IL-6は種々の生理現象や炎症・免疫疾患の発症メカニズムに関与していることが明らかになった。IL-6受容体は分子量130kDaの糖タンパク質である(CD130)と会合して細胞内にシグナルを伝える。gp130はIL-6受容体以外にも受容体をはじめ、白血球遊走阻止因子(英:Leukemia Inhibitory Factor、LIF)、M(OSM)、(英:Ciliary Neurotrophic Factor、CNTF)等に対する受容体とも会合し、これらの分子はIL-6ファミリーと呼ばれる。近年ではIL-27及びIL-31もIL-6ファミリーに属すると考えられている。また、IL-6は脂肪細胞から分泌され、脂質代謝に関与するアディポカイン(英:Adipokine)と呼ばれるグループに属する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アミリン(英: amylin)または膵島アミロイドポリペプチド(英: islet amyloid polypeptide、略称: IAPP)は、37残基からなるペプチドホルモンである。アミリンは膵臓のβ細胞からインスリンとともに分泌される(インスリン:アミリン比は約100:1)。アミリンは胃の内容物排出速度を低下させて満腹感を促進することで血糖値の調節に関与し、食後の血糖値スパイクを防ぐ。 IAPPは89残基のコーディング配列からプロセシングされる。IAPP前駆体(proIAPP、proamylin、proislet protein)は膵臓のβ細胞で67アミノ酸、7404 Daの前駆体ペプチドとして産生され、プロテアーゼによる切断などの翻訳後修飾を受けることでアミリンが産生される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デヒドロアラニン(Dehydroalanine)は、デヒドロアミノ酸の1つである。遊離型では存在せず、天然では微生物のペプチド内の残基として生じる。非飽和の骨格を持つ点で、アミノ酸残基としては特殊である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オキソリン酸またはオキソリニック酸(英: oxolinic acid)とはキノロンの1種。キノロン系抗生物質の1つとして獣医学領域で利用され、農薬(細菌病用殺菌剤)としても用いられる。抗生物質としては12-20mg/kg、5-10日の経口投与を行う。DNAジャイレースを阻害することにより抗生物質として作用する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    RAF1はヒトではRAF1遺伝子にコードされる酵素である。c-Raf(proto-oncogene c-RAF)という名称が用いられることもあり、他にもRAF proto-oncogene serine/threonine-protein kinase、Raf-1などとも呼ばれる。c-Rafは(ERK1/2経路)を構成し、Rasサブファミリーの下流のMAPキナーゼキナーゼキナーゼ(MAP3K)として機能する。c-Rafはセリン/スレオニンキナーゼのRafキナーゼファミリーのメンバーであり、TKL(Tyrosine-kinase-like)グループに属する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    二酸化硫黄(にさんかいおう、英: sulfur dioxide)は、化学式SO2の無機化合物である。常温では刺激臭を有する気体。気体は別名亜硫酸ガス。化石燃料の燃焼などで大量に排出される硫黄酸化物の一種であり、きちんとした処理を行わない排出ガスは大気汚染や環境問題の一因となる。 二酸化硫黄は火山活動や工業活動により産出される。石炭や石油は多量の硫黄化合物を含んでおり、この硫黄化合物が燃焼することで発生する。火山活動でも発生する。二酸化硫黄は二酸化窒素などの存在下で酸化され硫酸となり、酸性雨の原因となる。空気よりも重い。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チオレドキシン(thioredoxin)は、全ての生物に存在する低分子量の酸化還元タンパク質である。様々な生命反応において重要な役割を担っている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2-メトキシエタノールまたはメチルセロソルブは、化学式 C3H8O2 で表される有機化合物で、主に溶剤として用いられる。無色透明の液体でエーテル様の匂いがある。グリコールエーテルとして知られている溶媒に属する。異なるタイプの化学薬品を溶かすことができて、水や他の溶媒と混ざることは注目に値する。2-メトキシエタノールは、プロトン化したエチレンオキシドへのメタノールの求核攻撃と、それに続くプロトン脱離により形成される。 C2H5O+ + CH3OH → C3H8O2 + H+ 2-メトキシエタノールは、異なる目的、例えばワニス、染料、樹脂の溶剤として用いられる。また、航空機の除氷剤の添加剤としても用いられる。有機金属化学の分野では、バスカ錯体や関連した化合物、例えば、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II) [cabonylchlorohydoridotris(triphenylphosphine)ruthenium(II)]の合成に普通に用いられる。これらの反応の間、アルコール (=2-メトキシエタノール) は水素化物と一酸化炭素の供給源として働く。 2-メトキシエタノールは、骨髄と睾丸に対して毒性がある。高レベルに曝露された労働者には、顆粒球減少症、(英語: macrocytic anemia)、乏精子症、無精子症 (azoospermia) のリスクがある。 メトキシエタノールはアルコールデヒドロゲナーゼによってに変換される。これは有害な影響を引き起こす物質である。 エタノールと酢酸エステルの両方に保護効果がある。 メトキシ酢酸エステルはクレブス回路に入り、メトキシクエン酸エステルを形成する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピルビン酸カルボキシラーゼ(Pyruvate carboxylase)は、ピルビン酸を不可逆的にカルボキシル化してオキサロ酢酸にするリガーゼ群の酵素である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エタノールアミンリン酸(英: ethanolamine phosphate、EAP、O-リン酸エタノールアミン、英: O-phosphoethanolamine)またはリン酸エタノールアミン(英: phosphoethanolamine)、PEAは、広く生物界で見られる天然の化合物である。スフィンゴシン-1-リン酸リアーゼにより、脂質メディエーターのひとつであるスフィンゴシン-1-リン酸からエタノールアミンリン酸とtrans-2-ヘキサデセナールを生じる。同様の経路により、からも生成される。また、エタノールアミンキナーゼにより、エタノールアミンとATPからエタノールアミンリン酸とADPを生じる。エタノールアミンリン酸は、内因性カンナビノイド前駆体であるリン酸アナンダミドの一部でもある。 大うつ病患者では脳脊髄液中のエタノールアミン濃度が低下しているとの報告がある。ヒトの血漿中濃度は約2~5 μMである。大うつ病において血漿中エタノールアミン濃度が低下しているとの報告がある。 アメリカでは、カルシウム塩の形でサプリメントとして販売され、効能として細胞膜の強化が謳われている。 pKa値は5.61および10.39。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エキセメスタンは、第3世代アロマターゼ阻害薬のひとつ。乳癌の治療に用いられる。製品名はアロマシン錠(ファイザー製造販売)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジピコリン酸(ジピコリンさん、dipicolinic acid)は、細菌の芽胞の乾燥重量の5~15%を占める有機化合物である。芽胞が持つ耐熱性に関係した物質と考えられている 。 しかしながら、ジピコリン酸が欠乏しているが耐熱性をもつ変異種が分離されており、他の耐熱機構が存在することが示唆されている。 好気性バシラス属と嫌気性クロストリジウム属の2つの細菌の属が芽胞を作ることが知られている。 ジピコリン酸は、納豆に含まれ、抗菌作用を有し、溶連菌、ビブリオ、O-157などへの強い抗菌効果が認められている。納豆湿質量100gに対し20mg前後のジピコリン酸が含まれている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    5‐メチルウリジン〈5-methyluridine〉リボシルチミン (ribosylthymine) ないしはリボチミジン(ribothymidine)はメチル化ヌクレオシドの一種である。5‐メチルウリジンのデオキシリボース体がチミジンである。生体では核酸の微量成分で、tRNAに存在する。 核酸命名法の略号"T"はリボシルチミンを意味し、チミジン(dT)を意味しない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ペラルゴン酸(ペラルゴンさん、pelargonic acid)は、9個の炭素鎖の末端にカルボキシル基を持つ飽和脂肪酸である。 「使い古した食用油に似た不快なにおい」を持つ油状の液体で、水にはほとんど溶けないが、クロロホルムやエーテル、アルコール、酢酸エチルにはよく溶ける。消防法に定める第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アキシチニブ(Axitinib)は小分子の一つである。商品名インライタ。ヒト乳癌細胞移植モデルで細胞増殖を有意に抑制した。また腎細胞癌(RCC)での臨床試験や他の癌種で部分奏効した。無増悪生存期間が若干延長したが致死的な副作用も発現した。開発コードAG013736。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アロマターゼ(Aromatase, EC 1.14.14.14)は、エストロゲンシンテターゼ(estrogen synthetase)またはエストロゲンシンターゼと(estrogen synthase)も呼ばれ、エストロゲンの生合成に関与する酵素である。シトクロムP450スーパーファミリーの一つCYP19A1は、ステロイドの産生に関する様々な反応を触媒するモノオキシゲナーゼである。特に、アロマターゼはアンドロゲンをしてエストロゲンに変換する反応に関与している。アロマターゼは、性腺(顆粒膜細胞)、脳、脂肪組織、胎盤、血管、皮膚、骨などの多くの体組織のほか、子宮内膜症や子宮筋腫、乳癌、および子宮体癌の病巣部に見られる。 アロマターゼは思春期に重要な役割を果たしている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェネチルアルコール (phenethyl alcohol) とは、芳香族アルコールの一種。2-フェニルエタノールや2-フェニルエチルアルコール、β-フェニルエチルアルコールとも呼ばれる。水にはわずかに溶ける (2 mL/100 mL H2O) いっぽう、エタノールやエーテルとは混和する。天然にバラなどにも含まれ、酒にも含まれ、香料、保存料などに利用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クリプトクロム(Cryptochrome, Cry)は青色光受容体タンパク質である。 ギリシャ語で「隠れた色素」(κρυπτοσ χρομοσ) という意味であり、元来は植物にあると想定された青色光受容体を指した。現在では特定の一群のタンパク質の名称であり、植物にはもう一種の青色光受容体であるフォトトロピンも見つかっている。クリプトクロムは緑藻から高等植物までにあり、さらに動物などにもよく似たタンパク質があることが明らかになっている。 クリプトクロムはフラビンタンパク質で、植物では光に基づく花芽形成、伸長、概日リズムなどの調節に関与している。青色光は光屈性にも関わっているが、これはクリプトクロムでなくフォトトロピンによることがわかっている。植物にはこのほかに赤色・近赤外光受容体フィトクロムがある。多くの植物ではクリプトクロムには2種類あり、CRY1およびCRY2と呼ばれている。 クリプトクロムは、光をエネルギー源としてDNA修復を行う細菌の酵素であるフォトリアーゼに構造が似ており(酵素活性は失っている)、進化的にはこれに由来すると考えられている。色素団としてプテリンとフラビンの2つを含んでいる。プテリンが光子を吸収し、これにより電子が放出され、この電子はフラビンに吸収される。これによりクリプトクロム分子はリン酸化を受け、さらにシグナル伝達の引き金を引くものと考えられているが、詳細は不明である。 クリプトクロムは動物(脊椎動物、昆虫、サンゴなど)やシアノバクテリア(藍藻)にも見つかっているが、これらは植物のものとは別系統とされる(Zhu, etal.2005 CurrBiol)。 動物では概日リズムに働く2タイプのCryがある。ほ乳類のCryは光受容能力はなく、CLOCK/BMALの抑制に働く。キイロショウジョウバエのCRYは青い光を受容して概日リズムをリセットするが、抑制能力はない。ただし蝶, ミツバチ, ハマダラカなど他の昆虫ではほ乳類型とショウジョウバエ型の両方のCryを持っている。 発見 1880年代にチャールズ・ダーウィンが植物の青色光に対する反応を初めて記録したが、原因となる色素を特定する研究が始まったのは1980年代になってからである[6]。 1980年、研究者たちは植物シロイヌナズナのHY4遺伝子が植物の青色光感受性に必要であることを発見し、1993年にその遺伝子の塩基配列が決定されると、青色光によって活性化されるDNA修復タンパク質であるフォトリアーゼと高い配列相同性を示すことがわかった[7]。 1995年には、HY4遺伝子とその2つのヒトホモログの産物はフォトリアーゼ活性を示さず、代わりに概日光色素と推定される新しいクラスの青色光光受容体であることが明らかになった[8]。 1996年と1998年には、Cryホモログがそれぞれショウジョウバエとマウスで同定された[9][10]。 進化の歴史と構造 クリプトクロム (CRY1, CRY2) は、進化的に古く、高度に保存されたタンパク質であり、生命のあらゆる王国に存在するフラボタンパク質スーパーファミリーに属している[4]。 このスーパーファミリーのメンバーはすべて、N末端にフォトリアーゼホモロジー (PHR) ドメインを持つという特徴を持っている。PHRドメインは,フラビンアデニンジヌクレオチド(FAD)補因子や光捕集性発色団と結合できる[4]。クリプトクロムは,光によって活性化され,紫外線によって誘発されたDNA損傷の修復に関与する細菌の酵素であるフォトリアーゼに由来し,近縁の存在である。真核生物では、クリプトクロムはもはやこの元々の酵素活性を保持していない[11]。クリプトクロムの構造はフォトリアーゼと非常によく似た折り畳み方をしており、1分子のFADがタンパク質に非共有結合している[4]。ラマチャンドランプロット[12]によると、CRY1タンパク質の二次構造は主に右巻きのαヘリックスであり、立体的な重なりはほとんどない[13]。分子は直交する束のように配置されている[4]。 機能 光屈性 植物では,クリプトクロムは青色光に反応して,光源に向かって成長する光屈性を媒介する.この反応には、フォトトロピンという独自の光受容体が存在することが知られている。フィトクロームやフォトトロピンとは異なり、クリプトクロムはキナーゼではない。フラビンクロモフォアは、光によって還元されて細胞核に運ばれ、細胞核で膨圧に影響を与え、茎の伸長を引き起こす。具体的には、Cry2は、青色光による子葉や葉の伸長に関与している。トランスジェニック植物でCry2を過剰発現させると,青光刺激による子葉の膨張が増大し,数枚の原葉に花がつくよりも,多くの広葉樹の葉に花がつかなくなる[14]。シロイヌナズナのEarly Flowering 3(elf3)遺伝子とCry2遺伝子の二重機能喪失変異は,連続光下では開花を遅らせ,長日時・短日時には開花を早めることが示されており,シロイヌナズナのCRY2が連続光下での開花時期を早める役割を果たしている可能性が示唆されている[15]。 光形態形成 クリプトクロム受容体は、植物が光形態形成によって青色光に反応する原因となる。種子や苗の発育を制御し、植物体から花の咲く時期への切り替えを行う。シロイヌナズナでは、クリプトクロムが最適ではない青色光条件下での植物の成長を制御することが明らかになっている[16]。 光の取り込み ショウジョウバエやシロイヌナズナにおけるクリプトクロムの光受容と光伝達については、多くの研究がなされているにもかかわらず、まだ十分に理解されていない。クリプトクロムには、プテリン(5,10-メテニルテトラヒドロ葉酸(MTHF)の形)とフラビン(FADの形)という2つの発色団があることが知られている[17]。どちらも光を吸収する可能性があり、シロイヌナズナでは、プテリンは380 nm、フラビンは450 nmの波長で吸収するようである。過去の研究では、プテリンが捕らえたエネルギーがフラビンに伝達されるというモデルが支持されている[18]。この光伝達モデルでは、FADがFADHに還元され、クリプトクロムの特定のドメインのリン酸化を仲介すると考えられる。これがシグナル伝達の連鎖を引き起こし、細胞核での遺伝子制御に影響を与える可能性がある。 新しい仮説[19]では、植物のクリプトクロムでは、光信号をパートナー分子が感知できるような化学信号に変換する際に、FAD補因子や隣接するアスパラギン酸など、タンパク質内の光によって誘発される負電荷が引き金になるのではないかと提案している[20][21]。 この負電荷は、タンパク質に結合したATP分子を静電的に反発させ、その結果、光子吸収前にATP結合ポケットを覆っているタンパク質C末端ドメインも反発させる。その結果、タンパク質のコンフォメーションが変化し、C末端の以前はアクセスできなかったリン酸化部位がリン酸化され、リン酸化されたセグメントが光形態形成の負の制御因子COP1の同じ結合部位と競合することで、転写因子HY5を解放することができる。 ショウジョウバエでは,異なるメカニズムが機能している可能性がある。ショウジョウバエのCRYにおけるフラビン補酵素の真の基底状態については,いまだに議論されており,FADが酸化された形で存在するというモデルもあれば[22],フラビン補酵素がアニオンラジカルの形でAD−•として存在するというモデルを支持する人もいる.近年、酸化したFADが光によって容易にAD−•に還元されることが観察された。さらに,光還元を阻害する変異は,光によるCRYの劣化に影響を与えないが,FADの安定性を変化させる変異は,CRYの光受容体の機能を破壊することがわかった[23][24].また,最近では,FAD-が光子を吸収して2重状態または4重状態に励起され,それによってCRYタンパク質の構造が変化するというモデルも提案されている[25]. また,海綿体の眼には,青色光を受容するクリプトクロームが発現している.多くの動物の眼は、神経細胞に発現した光感受性のオプシンタンパク質を用いて光環境の情報を神経系に伝達しているが、海綿動物の幼生は色素環眼を用いて光泳ぎを行っている。しかし、海綿動物の幼生であるAmphimedon queenslandicaのゲノムには、他の多くのGタンパク質共役型受容体(GPCR)が存在するにもかかわらず、光感受性オプシン色素の遺伝子がないことが明らかになっている。RNAプローブを用いた研究により、2つのクリプトクロムのうちの1つ「Aq-Cry2」が、スポンジの単純な目の細胞の近くで生成されていることがわかった。Aq-Cry2はフォトリアーゼ活性を持たず、フラビンベースの補因子を含んでおり、幼生の光行動を媒介する波長の光に反応する。Aq-Cry2は、オプシンクラスのGPCRとして定義され、オプシン機能の中心となる保存されたShiff塩基リジンを有している。他の海綿動物と同様、A. queenslandicaは神経系を持たない。このことから、オプシンを持たないカイメンの眼は、クリプトクロムと他のタンパク質を利用して、眼を媒介とした光定位行動を指示または作用させていると考えられる[26]。 概日リズム 動物や植物の研究から、クリプトクロムが概日リズムの生成と維持に極めて重要な役割を果たしていることが示唆されている[27]。 同様に、植物の概日リズムの同調にもクリプトクロムが重要な役割を果たしている。 [28] ショウジョウバエでは、クリプトクローム(dCRY)は、概日時計への光の入力を直接調節する青色光の光受容体として働き[29] 、哺乳類では、クリプトクロム(CRY1およびCRY2)は、概日時計の中で転写抑制因子として働く。 [30] オオカバマダラを含むいくつかの昆虫は、哺乳類に似たクリプトクロムとショウジョウバエに似たクリプトクロムの両方を持っており、クリプトクロムの光感知と転写抑制の両方の役割を含む先祖代々の時計メカニズムの証拠となっている[31][32]。 Cry変異体は、概日リズムが変化しており、Cryが概日ペースメーカーに影響を与えていることを示している。また,Cry1またはCry2遺伝子を欠損したマウスでは,自由行動期間が異なるものの,光降伏が可能であった[34].しかし,Cry1とCry2の両方を欠損したマウスは,LDとDDの両方で不整脈を起こし,常にPer1のmRNAレベルが高い.これらの結果は,クリプトクロームが光受容的な役割を果たすとともに,マウスのPer遺伝子発現の負の調節因子として機能していることを示唆している[35]. ショウジョウバエの場合 ショウジョウバエでは、クリプトクロームは青色光の光受容体として機能している。青色光を照射すると,常に活性化しているCRYのC末端を欠いた変異体(CRYΔ)と同様のコンフォメーションが誘導される[25].このコンフォメーションの半減期は暗所では15分であり,光依存的にCRYと他の時計遺伝子産物であるPERやTIMとの結合を促進する[3][25][29][36]. dCRYと結合したdTIMは,ユビキチン-プロテアソーム系によって分解される. 光パルスが同調しないにもかかわらず,光周期のLDサイクルがショウジョウバエの脳の腹側ニューロンのサイクルを駆動することができる。これらのデータは、CRYがショウジョウバエの体内時計の細胞自律的な光受容体であり、ノンパラメトリックな同調(短い離散的な光パルスによる同調)の役割を果たしている可能性を示唆している。しかし、側方神経細胞は、青色光のCRY経路とロドプシン経路の両方で光情報を受け取っている。したがって,CRYは光の知覚に関与し,概日時計の入力となっているが,光情報の唯一の入力ではない。CRY経路がない場合でも持続的なリズムが示されており,この場合,ロドプシン経路が何らかの光の入力を提供していると考えられている[37]。 最近,古典的な概日性のCRY-TIM相互作用とは独立した,CRYを介した光反応があることも明らかになった。このメカニズムには,カリウムチャネルのコンダクタンスに依存したフラビンレドックスベースのメカニズムが必要であると考えられている.このCRYを介した光反応は,オプシンノックアウトしたショウジョウバエにおいて,光反応の数秒後に活動電位の発火を増加させることが示されている[38]. クリプトクロムは,概日リズムに関与する多くの遺伝子と同様に,mRNAおよびタンパク質レベルで概日的な循環を示す。ショウジョウバエでは,CryのmRNA濃度は明暗サイクル(LD)で循環しており,明所では高濃度,暗所では低濃度となる[33].この循環は暗所(DD)でも持続するが,振幅は減少する[33].Cry遺伝子の転写も同様の傾向で循環する[33].LDでは、CRYタンパク質は明所では低レベル、暗所では高レベルとなり、DDでは、CRYレベルは主観的な昼夜を通して連続的に増加する[33]。このように、CRYの発現は、転写レベルでは時計によって、翻訳および翻訳後のレベルでは光によって制御されている[33]。 また,Cryの過剰発現は,概日的な光反応にも影響を与える.ショウジョウバエでは,Cryを過剰に発現させると,ハエの低照度光に対する感度が向上する[33]。このようにCRYタンパク質レベルが光によって調節されることは,CRYが他の時計遺伝子や構成要素の上流で概日的な役割を果たしていることを示唆している[33]。 哺乳類 クリプトクロームは,Period(PER),CLOCK,BMAL1とともに,転写-翻訳-負帰還ループ(TTFL)を生成する4つのグループの哺乳類時計遺伝子/タンパク質の1つである[39]. [このループの中で,CLOCKとBMAL1タンパク質は転写活性化因子であり,共にCry遺伝子とPer遺伝子のプロモーターに結合してその転写を活性化する[39]。 そして,CRYとPERタンパク質は互いに結合して核に入り,CLOCK-BMAL1の活性化した転写を阻害する[39]。 マウスでは,Cry1の発現は,概日リズムの生成に関与する脳領域である視交叉上核において,明期にmRNAレベルがピークに達し,暗期には最小になるという概日リズムを示していた[40]. CRYは哺乳類におけるTIMのホモログとして確立されていますが、哺乳類における光受容体としてのCRYの役割については議論の余地があります。初期の論文では,CRYには光に依存しない機能と依存する機能の両方があることが指摘されていました.2000年の研究では,ロドプシンを持たないがクリプトクロムを持つマウスは光に反応するが,ロドプシンとクリプトクロムのどちらも持たないマウスでは,光感受性のメディエーターであるc-Fosの転写が著しく低下することが示された[41]. [近年、メラノプシンが主な概日光受容体であることを支持するデータが出てきており、特にメラノプシン細胞は眼と視交叉上核(SCN)の間の同調とコミュニケーションを媒介している[42]。 哺乳類の光受容体としてCRYを肯定するか否定するかの主な難点は、遺伝子をノックアウトすると動物が不整脈を起こすため、純粋に光受容体としての能力を測定することが難しいことである。しかし,いくつかの最近の研究は,ヒトCRYが末梢組織における光反応を媒介する可能性を示しています[43]. 正常な哺乳類の概日リズムは、Cry1プロモーターの活性化後のCry1の遅延発現に決定的に依存している。Per2プロモーターの活性化とPer2 mRNAレベルのリズムがほぼ同じ位相であるのに対し、Cry1 mRNAの生成はCry1プロモーターの活性化に比べて約4時間遅れる[44]。 [この遅延は、CRY1やCRY2のレベルとは無関係であり、プロモーターのE/E'ボックスおよびDボックス要素と、遺伝子の第1イントロンにあるRevErbA/ROR結合要素(RRE)の組み合わせによって媒介される[45]。 不整脈を起こしているCry1//-Cry2//-ダブルノックアウト細胞に、Cry1プロモーターのみをトランスフェクションしても(Cry1の構成的な発現を引き起こす)、リズムを回復するのに十分ではない。これらの細胞で概日リズムを回復させるには、プロモーターと第1イントロンの両方をトランスフェクションすることが必要である[45]。磁気受容 磁気受容 主な記事 磁気受容 磁気受容とは、生物が磁場を感知して方向や高度、位置を認識するための感覚である。鳥の目の視細胞に含まれるクリプトクロムが、移動中の磁気的な方向性に関与しているという実験データがある[46]。 また、ショウジョウバエの光による磁場感知能力にもクリプトクロムが必須であると考えられている[47]。磁場がシロイヌナズナのクリプトクロムにも影響を与えることが報告されたことがある。 青色光(赤色光ではない)の存在下で、成長行動が磁場の影響を受けているように見えた[48]。 しかし、この結果は後に別の研究室で厳密に管理された条件では再現できないことが判明し[49]、植物のクリプトクロムは磁場に反応しないことが示唆された。 クリプトクロムは、青色光を照射すると、スピンが相関したラジカル対を形成する[50][51]。ラジカル対は、光に依存しない暗所でのフラビン補酵素の分子酸素による酸化反応でも、スピンが相関したFADH-スーパーオキシドラジカル対を形成して生成される[52]。磁気受容は、周囲の磁場がこれらのラジカルの相関(平行または反平行)に影響を与えることで機能すると仮定されており、これが活性化された形のクリプトクロムの寿命に影響を与えると考えられている。クリプトクロムの活性化は、網膜ニューロンの感光性に影響を与え、その結果、動物は磁場を感知することができる[53]。 動物のクリプトクロームと近縁の動物(6-4)フォトリアーゼは、クリプトクロム・フォトリアーゼ・スーパーファミリーの他のタンパク質よりも、電子伝達を行うトリプトファンの鎖が長い(トリプトファンが3つではなく4つ)[54][55]。 [ナノ秒からマイクロ秒の時間スケールでこれらのラジカルペアのスピン選択的な再結合がないことは,クリプトクロームによる磁気受容が前方光反応に基づいているという提案とは相容れないように思われる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    テルル化水素(テルルかすいそ、hydrogen telluride)は、化学式が H2Te と表される、テルルと水素からなる無機化合物であり、カルコゲン化水素の一つ、IUPAC組織名はテラン (tellane)。テルルの形式酸化数は −2価で、もっとも単純なテルリドである。 酸素族元素(カルコゲン元素)の水素化物のひとつ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    HER2(ハーツー)は、細胞表面に存在する約185 kDaの糖タンパクで、受容体型チロシンキナーゼである。上皮成長因子受容体 (EGFR、別名ERBB1) に類似した構造をもち、EGFR2、ERBB2、CD340、あるいはNEUとも呼ばれる。HER2タンパクをコードする遺伝子は HER2/neu、erbB-2 で17番染色体長腕に存在する。また、HER2 は、human epidermal growth factor receptor (HER/EGFR/ERBB) family(EGFRファミリー)に属するタンパク質である。 HER2タンパクは正常細胞において細胞の増殖、分化などの調節に関与しているが、何らかの理由でHER2遺伝子の増幅や遺伝子変異が起こると、細胞の増殖・分化の制御ができなくなり、細胞は悪性化する。HER2遺伝子はがん遺伝子でもあり、多くの種類のがんで遺伝子増幅がみられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ナリジクス酸(ナリジクスさん、Nalidixic acid)とは、1962年に社により開発(化学合成)された抗菌剤の一種である。日本では第一製薬によりウイントマイロンという商品名で販売された(現在は第一三共製造販売ののちに販売中止」)。 社名(ウインスロップ社、Winthrop)由来の前半と、抗生物質と区別するために後半をマイシン(mycin)ではなくマイロン(mylon)として、ウイントマイロン(WINTO+MYLON)と命名された。 この化合物は最初に発見されたキノロン系抗菌剤であり、第一世代キノロンに分類されている。ナリジキシン酸(ナリジキシンさん)とも呼ばれる。主にグラム陰性菌に対して効果を発揮するが、のちにレボフロキサシンをはじめとする、グラム陽性菌にも効果を発揮するニューキノロンと呼ばれる抗菌薬群も開発された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デオキシリボース (deoxyribose) または2-デオキシ-D-リボースは、アルドース、ペントースおよびデオキシ糖の一つで、アルデヒド基を含む単糖である。1929年にフィーバス・レヴィーンによって発見された。 リボースの2位のヒドロキシル基が水素に置換され、元より酸素原子が1つ減少した構造をしている。デオキシリボ核酸 (DNA) の構成成分でもある。 五員環構造はデオキシリボフラノース (Deoxyribofuranose) と呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フルボキサミン(英:Fluvoxamine)は、選択的セロトニン再取り込み阻害薬(SSRI)に分類される抗うつ薬のひとつで、ベルギーの化学会社ソルベイ(医薬品部門は現アッヴィ)によって創製された。 1999年5月に、日本で最初に発売されたSSRIである。日本ではルボックス(アッヴィ)、デプロメール(Meiji Seika ファルマ)の商品名で知られ、うつ病・うつ状態、強迫性障害、社交不安障害に適応がある。処方箋医薬品である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    D-プシコース(D-psicose、Psi、D-allulose、D-ribo-2-hexulose)は、六炭糖およびケトースに分類される単糖の一種。D-フルクトースの3位のエピマーである。名称はプシコースの初期の名称であるpseudo-fructoseの略記法であるΨ-fructoseから来ている。アルロースとも呼ばれる。 当量のスクロース(ショ糖)のわずか0.3%のカロリーしかエネルギーとして利用されないという特徴がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウリジン二リン酸 N-アセチルグルコサミン(ウリジンにリンさん N-アセチルグルコサミン、Uridine diphosphate N-acetylglucosamine、略称: UDP-GlcNAc)は、糖ヌクレオチドの一つであり、代謝における補酵素の一つである。UDP-GlcNACは基質にN-アセチルグルコサミン残基を転移するためにによって使われる。D-グルコサミンは、の形で天然で作られ、全ての窒素含有糖の生化学的前駆体である。具体的に言うと、グルコサミン-6-リン酸は、ヘキソサミン生合成経路の第一段階としてフルクトース-6-リン酸およびグルタミンから合成される。この経路の最終産物がUDP-GlcNAcであり、グリコサミノグリカンやプロテオグリカン、糖脂質を作るために用いられる。 UDP-GlcNAcは、幅広い種においてO結合型N-アセチルグルコサミン転移酵素 (OGT) の基質として細胞内シグナル伝達に広範に関与している。また、核膜孔形成および核シグナル伝達にも関与している。OGTおよびOG分解酵素は、細胞骨格の構造において重要な役割を果たしている。ほ乳類では、膵臓のβ細胞においてOGT転写産物が多くあり、UDP-GlcNAcはグルコース感知機構の一部をなしていると考えられている。また、その他の細胞でインスリン抵抗性に関与していることも明らかにされている。植物では、ジベレリン生産の制御に関与している。 Clostridium novyiタイプAαトキシンは、O結合型N-アセチルグルコサミン転移酵素であり、Rhoタンパク質に作用し、細胞骨格の崩壊の原因となる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コプロポルフィリノーゲンI(Coproporphyrinogen I)とは、急性間欠性ポルフィリン症で体内に蓄積されるテトラピロールである。 ヒドロキシメチルビランがウロポルフィリノーゲンIIIシンターゼによって縮合し、環を巻く際、ウロポルフィリノーゲンIIIシンターゼの働きにより4つのピロール環が整然と並んだヒドロキシメチルビランの一端のピロール環一つだけが反転して縮合し環を形成する。ウロポルフィリノーゲンIIIシンターゼがはたらかない場合、ピロール環が整然と並んだままのヒドロキシメチルビランが自発的に縮環してウロポルフィリノーゲンI が生成する。ウロポルフィリノーゲンI はウロポルフィリノーゲン脱炭酸酵素の基質となりコプロポルフィリノーゲンIへと変換されるが、これはコプロポルフィリノーゲン酸化酵素の基質とならないため、プロトポルフィリンには至らない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    バリエノール(Valienol)またはストレプトール(Streptol)は、C-7シクリトールである。バリエナミンと似た構造を持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イノシン (inosine) は、ヌクレオシド構造を持つ有機化合物の一種である。ヒポキサンチン(6-ヒドロキシプリン)とD-リボースからなるN-リボシドで、その構造は ヒポキサンチンリボシドとも表される。Ino、Iと略記される。肉類などの中に存在する天然化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジヒドロリポイルデヒドロゲナーゼ(dihydrolipoamide dehydrogenase)は、フラボタンパク質酵素の一つで、をに分解する酸化還元酵素である。 * *

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インドール(Indole)は、分子式 C8H7N、分子量 117.15 で、ベンゼン環とピロール環が縮合した構造をとる有機化合物である。窒素原子の孤立電子対が芳香環の形成に関与しているためインドールは塩基ではない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミドスタウリン (midosutaurin, PKC412) は、マルチターゲットプロテインキナーゼ阻害剤であり、急性骨髄性白血病 (AML) および骨髄異形成症候群 (MDS) の治療薬として研究されている。ミドスタウリンは、微生物Streptomyces staurosporeusに含まれるアルカロイドであるスタウロスポリンの半合成類縁体であり、 (FMS-like tyrosine kinase 3 receptor) に変異を有する患者に対して活性を示す。 第II相臨床試験の成功後、AMLに対する第III相試験が2008年に開始された。ここでは、ミドスタウリンとダウノルビシンおよびシタラビンとの複合療法が試されている。その他の治験では、悪性黒色腫に対して無効であることが確かめられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジステアロイルホスファチジルコリン(Distearoylphosphatidylcholine、DSPC)は、リン脂質の一種であるホスファチジルコリンである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クェルセチン(またはクエルセチン、ケルセチン、英: quercetin)は、フラボノイドの一種でフラボノールを骨格に持つ物質。配糖体(ルチン、クエルシトリンなど)または遊離した形で柑橘類、タマネギやソバをはじめ多くの植物に含まれる。黄色い色素で、古くから染料としても用いられてきた。分子式は C15H10O7、分子量 302.24、CAS登録番号は [117-39-5]。 化合物名は1857年から使用されており、ラテン語で「オークの森」を意味するquercetum(ラテン語でオークはQuercus - コナラ属)に由来する。クェルセチンは天然に存在するオーキシン極性移動阻害剤である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アンドロステロン(androsterone)または5α-アンドロスタン-3α-オール-17-オン(5α-androstan-3α-ol-17-one)は、内因性ステロイドホルモン、神経ステロイド、推定上のフェロモンである。の約7分の1のを持つ弱いアンドロゲン(雄ホルモン)である。アンドロステロンはテストステロンおよびジヒドロテストステロン(DHT)の代謝物である。加えて、および17β-ヒドロキシステロイドデヒドロゲナーゼによって、アンドロステンジオンやテストステロンといった従来型中間体を迂回してDHTへと元に戻る。そのようなものとして、アンドロステロンはそれ自体で代謝中間体を考えることができる。 アンドロステロンは、GABAA受容体の正のアロステリック調節因子として働くアンドロスタン神経ステロイドとしても知られており、また抗てんかん作用を有する。アンドロステロンの非天然型エナンチオマーはGABAA受容体の正のアロステリック調節因子や抗てんかん薬として天然型よりも高い効果を示す。アンドロステロンの3β-異性体は、5β-異性体は、3β,5β-異性体はである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    DAPI(ダピ、ダーピー、4',6-diamidino-2-phenylindole)は染色に用いられる蛍光色素の一種で、DNAに対して強力に結合する物質である。蛍光顕微鏡観察に広く利用されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ケラトルファン(Kelatorphan)は、ネプリライシン、、、アンジオテンシン変換酵素等、内在性エンケファリンの代謝に関わるほぼ全ての酵素を強力に阻害する。マウスにおいて50 μgのケラトルファンとともにを内投与すると(ケラトルファンは血液脳関門を通過できないため)、メチオニンエンケファリンの鎮痛効果はおよそ5万倍(ED50は約10 ng)になる。ケラトファンは単独でも強力な抗侵害受容効果を示し、呼吸を抑制することはなく、高濃度では実際に増加させる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スラミン(Suramin)は、アフリカ睡眠病や糸状虫症の治療に用いられる薬剤である。アフリカ睡眠病の治療で中枢神経系に関与しない治療方針で選択される薬剤である。投与方法は点滴静脈注射である。 スラミンによる副作用は多数ある。主な副作用は、吐き気、嘔吐、下痢、頭痛、皮膚の刺激感、衰弱などである。さらに、掌と足の裏の痛み、視覚障害、発熱、腹痛が生じることがある。 重度の副作用には、低血圧、の低下、腎不全、などがあげられる。授乳中のヒトへの投与の安全性は不明確である。 スラミンか造られたのは早くて1916年である。世界保健機関の必須医薬品リストに掲載されており、最も効果的で安全な医療制度に必要とされる医薬品である。米国ではアメリカ疾病予防管理センター(CDC)から入手できる。一貫の治療にかかる薬剤費用は約27米ドルである。世界中でアフリカ睡眠病がよく診られる地域では世界保健機関から無料でスラミンが提供される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジアゼパム(英語: Diazepam)は、主に抗不安薬、抗痙攣薬、催眠鎮静薬として用いられる、ベンゾジアゼピン系の化合物である。筋弛緩作用もある。アルコールの離脱や、ベンゾジアゼピン離脱症候群の管理にも用いられる。ジアゼパムは、広く用いられる標準的なベンゾジアゼピン系の一つで、世界保健機関(WHO)による必須医薬品の一覧に加えられている。また広く乱用される薬物であり、1971年の国際条約である向精神薬に関する条約のスケジュールIVに指定されている。日本では処方箋医薬品の扱いであり、「ジアゼパム錠」という名称で処方されている。処方・入手は医師の処方箋に限られる。 ジアゼパムはてんかんや興奮の治療に用いられる。また、有痛性筋痙攣(いわゆる“こむらがえり”)などの筋痙攣の治療にはベンゾジアゼピン類の中で最も有用であるとされている。鎮静作用を生かし手術などの前投薬にも用いられる。アルコールやドラッグによる離脱症状の治療にも用いられる。 ジアゼパムによる有害事象としては、前向性健忘(特に高用量で)と鎮静、同時に、激昂やてんかん患者における発作の悪化といった奇異反応が挙げられる。またベンゾジアゼピン系はうつ病の原因となったり悪化させることがある。ジアゼパムも含め、ベンゾジアゼピンの長期的影響として耐性の形成、ベンゾジアゼピン依存症、減薬時のベンゾジアゼピン離脱症状がある。ベンゾジアゼピンの中止後の認知的な損失症状は、少なくとも6か月間持続する可能性があり、いくつかの損失症状の回復には、6か月以上必要な可能性があることが示されている。ジアゼパムには身体的依存の可能性があり、長期間にわたって使用すれば身体的依存による重篤な問題の原因となる。処方の慣行を改善するために各国政府に対して、緊急な行動が推奨されている。 化学的には、1,4-ベンゾジアゼピン誘導体で、1950年代にレオ・スターンバックによって合成された。1960年代に広く用いられることとなった。日本での代替医薬品でない商品には、武田薬品工業のセルシンやアステラス製薬のホリゾンがあり、他に各種の後発医薬品が利用可能である。アメリカ合衆国での商品名としてValium、Seduxenなどがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カイロ-イノシトール は、イノシトールの10種あるアイソマーのうちの一つを構成する。のセカンドメッセンジャーとして機能する事が明らかにされ、神経組織の伝達と関連するミオイノシトールと並んで臨床的に特に重要な物質である。カイロ-イノシトールは、細胞膜のリン脂質、グリコシルホスファチジルイノシトールの構成イノシトールであり、インスリン代謝作用の伝達へ関与が報告されている。無月経や不妊の原因疾患である多嚢胞性卵巣症候群の疾患患者は、体内でのカイロ-イノシトール欠乏が認められるが、D-カイロ-イノシトールの経口補充によって、インスリン抵抗性及び無月経の著明な改善が報告されている。 において、D-カイロ-イノシトールを摂取した多嚢胞性卵巣症候群の女性は、対照群と比較して、遊離および総テストステロン値の低下、血圧、インスリン感受性の改善及び排卵の増加が報告されている。 カイロ-イノシトールは自然界に存在する天然の物質であるが、蕎麦を除く植物体からは殆ど検出されない。 そのため、食品中に含まれるイノシトールからエピメラーゼの作用を経て体内で生合成されている可能性がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    UDP-グルコース-ヘキソース-1-リン酸ウリジリルトランスフェラーゼ(UDP-glucose—hexose-1-phosphate uridylyltransferase)は、摂取したガラクトースをグルコースへ転換する酵素である。ガラクトース-1-リン酸ウリジリルトランスフェラーゼ(galactose—1-phosphate uridylyltransferase, GALT)とも呼ばれる。 * ガラクトース * グルコース これは、ルロワール経路において重要な酵素で、UDP-グルコースとガラクトース-1-リン酸からUDP-ガラクトースとグルコース-1-リン酸を作り出す。また、この酵素の変異によってガラクトース血症が引き起こされる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジメチルグリシン(Dimethylglycine)は、構造式では(CH3)2NCH2COOHで表されるグリシンの誘導体である。マメや肝臓で見られる。トリメチルグリシンが1つのメチル基を失うことによって形成される。また、コリンの代謝の副産物でもある。 ジメチルグリシンが最初に発見された時にはビタミンB16と呼ばれたが、実際のビタミンB群とは異なり、食物からジメチルグリシンを得られなくても病気にはならない。これはヒトの体内でもクエン酸回路で合成されるためで、ビタミンの定義には当てはまらない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アデノシン(Adenosine)とは、アデニンとリボースからなるヌクレオシドである。アデニンとリボースは、β-N9-グリコシド結合している。地球生物の生体内に普遍的に見られる物質の1つである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    p-トルイル酸(パラ トルイルさん)は、芳香族化合物である。安息香酸の4位にメチル基が結合した構造で、4-メチル安息香酸とも呼ばれる。p-キシレンから、ポリエチレンテレフタラートの原料となるテレフタル酸を製造する際の反応中間体として生じる。白色の結晶で、水に溶けないがアセトンには溶ける。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルコン酸(グルコンさん、gluconic acid)はグルコースの1位の炭素を酸化することによって生成するカルボン酸で、化学式C6H12O7で表される。光学活性化合物であり、天然にはD体が存在、そのIUPAC組織名は (2R,3S,4R,5R)-2,3,4,5,6-ペンタヒドロキシヘキサン酸と表される。水に溶かすとグルコン酸イオンC6H11O7−となる。アルドン酸の一種。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    脳性ナトリウム利尿ペプチド(のうせいナトリウムりにょうペプチド, 英 brain natriuretic peptide; BNP)は心臓から分泌されるホルモンである。主として心室で合成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-メチルイミダゾール(英: 4-Methylimidazole)は、化学式C4H6N2で表される複素環式化合物の一種で、4-MIとも略記される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2,4-ジニトロフェノール(英: 2,4-Dinitrophenol、DNP)は有機化合物の一つ。黄色結晶性固体で、甘く黴臭い臭気を持つ。昇華性がある。ほとんどの有機溶媒や、アルカリ性の溶液に溶ける。酸化的リン酸化を脱共役化し、ATPの発生しないエネルギーの急速な消費を行う。自然界には存在しない人工の化合物である。 2,4-ジニトロクロロベンゼンの加水分解によって合成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チオグアニン(TioguanineまたはThioguanine)または6-チオグアニン(6-TG)は、急性骨髄性白血病(AML)、急性リンパ性白血病 (ALL)、慢性骨髄性白血病(CML)の治療に用いられる医薬品である。長期間の使用は推奨されない。投与法は経口である。 一般的な副作用には、骨髄抑制、肝臓障害、口の炎症があげられる。チオグアニンを服用しているときは、肝臓酵素の検査を毎週することが勧められる。遺伝的なの欠損がある人への投与は副作用のリスクが高い。チオグアニンを服用しているときは、男性と女性の両方ともに妊娠を避けることが推奨される。 チオグアニンは代謝拮抗薬に属する医薬品である。作用機序はグアニンのであり、DNAとRNAを阻害することにより効果がある。 チオグアニンは1949年から1951年に開発された。世界保健機関の必須医薬品リストに掲載されており、医療制度に必要である最も安全で効果的な医薬品である。2014年時点の開発途上国での卸売価格は40錠あたり約7.07米ドルである。英国の国民保健サービスにかかる費用は40錠あたり約4.14ポンドである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ゲニステイン(英:Genistein)は、良く知られているイソフラボンの一つである。ゲニステインやダイゼインのようなイソフラボンは、一次食材であるルピナス属、ソラマメ、クズやen:psoralea や薬草であるen:Flemingia vestita やコーヒーから見つかっている。抗酸化物質や駆虫薬の役割に加えて多くのイソフラボンは、ホルモンであるエストロゲンよって起こる生理作用を及ぼす動物とヒトのエストロゲン受容体に作用することを示してきている。イソフラボンは、非ホルモン作用も起こす。ゲニステインは、1899年にen:Genista tinctoriaから初めて抽出され、化合物の名前は属 (分類学)の名前に由来している。ゲニステインがprunetolと一致していることが発見された際に、ゲニステインの化合物の核が1926年に合成された。ゲニステインが化学的に合成できたのは1928年である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    マンニトール (mannitol) は糖アルコールの一種である。 ヘキソースに分類され、マンノースの還元体に相当する。マンニット (mannite) とも呼ばれる。光学活性物質であり、天然に多く存在するエナンチオマーは D-マンニトールである。ソルビトールの異性体である。 ヨーロッパから中近東にかけて自生するモクセイ科の(Manna Ash、Fraxinus ornus)の甘い樹液から発見・命名された。マンナトネリコの名はマナにちなむ。 浸透圧調製剤・利尿剤であり、弱い腎臓血管拡張剤でもある。 水溶液中ではプロトンを放出する性質を持つため、水溶液は酸性になる。このため、炭酸ナトリウムなど pH 調整剤を併用することが珍しくない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセト酢酸(アセトさくさん、acetoacetic acid)は、カルボン酸、ケト酸。別名は、3-オキソブタン酸。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エルゴカルシフェロール(Ergocalciferol)は、ビタミンDの成分の一つ。ビタミンD2とも呼ばれる。組織名は(3β,5Z,7E,22E)-9,10-セコエルゴスタ-5,7,10(19),22-テトラエン-3-オール。から生合成されるが、これはエルゴステロールが紫外線によって活性化されたときに起こる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フォリン酸(フォリンさん、英: folinic acid、国際一般名: folinic acid)は、ふつうカルシウム塩またはナトリウム塩として、メトトレキサートを含む癌化学療法の際に投与される。また、フォリン酸は阻害薬としてのフルオロウラシル(5-FU)の作用を増強する効果もある。 生物学的に活性があるのはL体のみであり、レボフォリン酸という場合には全ての分子がL体であるものを指す。 フォリン酸は1948年にシトロボラム因子として発見され、現在でもその名称で呼ばれることがある。フォリン酸(folinic acid)は、英語圏では時に葉酸(folic acid)と混同されることがある。フォリン酸(N5-Formyl-THF=)は、体内で容易に代謝されて葉酸の活性型であるN5,N10メチレンテトラヒドロ葉酸となる。 フォリン酸は、世界保健機構が定めた必須医薬品リストであるWHO必須医薬品モデル・リストにも含まれている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グリオキサール (glyoxal) は、有機化合物の中で最も簡単なジアルデヒド。別名 シュウ酸アルデヒド(蓚酸アルデヒド)、エタンジアール。分子式 C2H2O2、構造式 OHC−CHO。分子量 58.04。CAS登録番号は [107-22-2]。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    第VII因子(だい7いんし、英: factor VII)は、血液凝固カスケードに関与するタンパク質の1つである。以前はプロコンバーチンまたはプロコンベルチン(proconvertin)という名称でも知られていた。第VII因子は酵素前駆体として産生され、プロテアーゼによって活性化されて活性型第VII因子(第VIIa因子)となる。セリンプロテアーゼに分類される酵素である。(エプタコグアルファ(活性型)(eptacog alfa [activated])、商標名ノボセブン(NovoSeven))は、血友病患者の出血性病態に対する治療として承認されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    亜リン酸(あリンさん、Phosphorous acid)は、化学式がH3PO3の無機化合物である。リンのオキソ酸の一つで、他にはリン酸とがある。還元されたリン化合物のみ語尾が"ous"となっている。酸無水物の加水分解によって合成される。 これはリン酸と五酸化二リンとの関係に似ている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    バリエナミン(Valienamine)は、アカルボースやバリダマイシン等の擬オリゴ糖の構造として見られるC-7である。アクチノプラネス属で見られる。 細菌によるバリダマイシンの分解の中間体でもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アスコクロリン(ascochlorin)はボタンタケ目に属する一部の糸状菌(アクレモニウムなど)が生産する抗生物質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    マクロファージコロニー刺激因子(マクロファージコロニーしげきいんし、macrophage colony-stimulating factor;M-CSF)またはコロニー刺激因子1(colony stimulating factor 1;CSF1)は、造血幹細胞をマクロファージやその他の関連細胞に分化させる分泌型サイトカインである。また、真核細胞は、細胞間のウイルス感染に対抗するためにM-CSFを産生する。M-CSFは、実験的に報告されている3つのの内の1つである。M-CSFは、に結合する。また、M-CSFは胎盤の形成にも関与している可能性がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミルリノン(Milrinone)は、心不全の治療に用いられる医薬品で、ミルリーラの商標名で知られる。後発医薬品も販売されている。で、心臓収縮を増やし、を減らす。また、血管拡張薬として心臓の圧力増加(後負荷)を軽減し、ポンプ作用を改善する。ミルリノンは心臓疾患を持つ患者に長年用いられてきたが、臨床使用に対して議論を呼ぶ副作用が存在する可能性が研究からは示唆されている。 全体として、ミルリノンは環状アデノシン一リン酸(cAMP)の分解を減少させ、収縮性や心拍数に寄与する多くの構成要素のリン酸化レベルを増加させることによって心臓の心室機能を助ける。心臓手術後のミルリノンの使用は、術後の心房性不整脈のリスクが増大する可能性があるため、その是非が議論されている。短期的には、ミルリノンは心不全を抱える患者に良い影響を及ぼし、心臓手術後の心機能の維持に効果的な治療法であると考えられているが、長期的な生存に関して効果があるとの証拠はない。心機能障害が認められる重症患者に対しては、使用を勧める質の高い証拠は限られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エムトリシタビン(英: Emtricitabine)は、一般にFTCと呼ばれ、IUPAC名 2', 3'-ジデオキシ-5-フルオロ-3'-チアシチジン、商品名エムトリバ(Emtriva、旧称 Coviracil)で、HIV感染予防と治療のため成人と小児に用いられる、(NRTI)。 エムトリシタビンは、テノホビル ジソプロキシルフマル酸塩(ビリアード、Viread) との合剤のツルバダ(Truvada)、テノホビル アラフェナミドと(ベムリディ、Vemlidy)との合剤のデシコビ(Descovy)としても販売されている。 エムトリシタビン、テノフォビル、 エファビレンツ(が販売するサスティバ、Sustiva)の3剤の合剤は、2006年7月12日に米国食品医薬品局 (FDA)で承認され、商品名はAtripla。 エムトリシタビンは、クワッドピル(Quad pill 、商品名 スタリビルド(Stribild)、ゲンボイヤ(Genvoya))の4成分のうちの1つ。 エムトリシタビンは、WHO必須医薬品モデル・リストの必須医薬品の1つで、つまり基本的な健康システムに必要な最も重要な医薬品のリストに掲載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    C-ペプチド(英: C-peptide, connecting peptide)は、分子内でインスリンのA鎖とB鎖を連結している31アミノ酸のポリペプチドである。血清中のC-ペプチドの測定は、糖尿病や低血糖症の診断の際に、類似した臨床像を有する他の疾患との鑑別に利用される場合がある。 インスリン合成経路では、まず膵臓のβ細胞でA鎖、Cペプチド、B鎖、シグナルペプチドを含むが小胞体へ移行する。シグナルペプチドはによってN末端から除去され、プロインスリンが形成される。ゴルジ体でプロインスリンが小胞(β顆粒)へ詰め込まれた後にCペプチドは除去され、ジスルフィド結合によって連結されたA鎖とB鎖からなるインスリン分子が形成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チアマゾール(英: Thiamazole)は、抗甲状腺薬の一種である。メチマゾール(英: Methimazole)とも呼ばれる。プロピルチオウラシルと同様、甲状腺ホルモンを抑制する作用を持つ。チオアミドに属する。日本ではメルカゾールの商品名で発売されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イニパリブ(Iniparib)は、かつてトリプルネガティブ乳癌等の癌の治療薬の候補であった化合物である。 当初、共有結合によるPARP1の不可逆的阻害薬として作用すると考えられていたが、PARPに対する作用は後に否定された。 一部の乳癌を対象とした臨床試験が行われたが、第III相臨床試験が不本意な結果となったため開発が中止された。開発コード:BSI 201。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    γ-アミノ酪酸(ガンマ-アミノらくさん、gamma-Aminobutyric acid )または4-アミノ酪酸(IUPAC名 4-aminobutanoic acid)は、アミノ酸のひとつで、主に抑制性の神経伝達物質として機能している物質である。 アミノ酪酸にはアミノ基のつく位置によりα-、β-、γ-の3種類の構造異性体が存在するが、γ-アミノ酪酸は、そのうちのひとつである。英語名の γ(gamma)-aminobutyric acid の頭文字をとった略称 GABA(ギャバ)が一般的に広く用いられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ルボキシスタウリン (ruboxistaurin) は、糖尿病性周辺網膜症に対する治療薬として開発中の化合物である。商品名はArxxant(アークサント)となることが提案されている。イーライリリー・アンド・カンパニーによって現在開発されている。開発コードのLY333531としても知られている。 2006年2月、リリーはルボキシスタウリンの新薬申請を提出し、2006年8月18日にアメリカ食品医薬品局から認可のレターを受け取ったが、完了に5年を要する追加の臨床試験を求められた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ゲムフィブロジル(Gemfibrozil)は、ロピド(Lopid)などの商品名で販売されている、異常な血中脂質レベルの治療に用いられる医薬品である。一般的にゲムフィブロジルよりスタチンが優先的に使用される。食事の改善と運動との併用が勧められる。心臓病のリスクを変えるかどうかは明確ではない。投与法は経口である。 一般的な副作用には、頭痛、めまい、疲労感、腸の不調などがあげられる。重度の副作用には、血管浮腫、胆石、肝臓障害、筋肉の破壊などがあげられる。妊娠中と授乳中の人への投与の安全性は不明確である。 ゲムフィブロジルはフィブラート系薬剤に属する医薬品であり、その作用機序は脂肪細胞の脂質の分解を減少させることによって効果がある。 ゲムフィブロジルは1968年に特許認可され、1982年に医薬品として用いられるようになった。後発医薬品として入手可能である。日本でも開発されていたが、2002年に承認申請が取り下げられた。2019年の英国のNHSにかかった1か月分の費用は約30ポンドである。米国での1か月分の卸値は約6米ドルである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    β-セクレターゼ1 (beta-secretase 1, BACE1) は、beta-site amyloid precursor protein cleaving enzyme 1、beta-site APP cleaving enzyme 1、membrane-associated aspartic protease 2、memapsin-2、aspartyl protease 2、ASP2 といった名称でも知られる酵素で、ヒトではBACE1遺伝子にコードされている。 BACE1は、末梢神経細胞におけるミエリン鞘の形成に重要なアスパラギン酸プロテアーゼある。膜貫通タンパク質で、細胞外ドメインの活性部位には2つのアスパラギン酸残基が含まれる。二量体として機能する可能性がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    レイン(Rhein)は、に分類される有機化合物の1種である。 この化合物が下剤としての作用を示すことは古くから知られていた。この他、2008年になって黄色ブドウ球菌に対して抗菌作用も持っていたことが明らかとなった。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    亜酸化窒素(あさんかちっそ、英語: nitrous oxide)とは、窒素酸化物の1種である。組成式はN2Oで表され、IUPAC勧告に従った命名法では、酸化二窒素(さんかにちっそ、英語: dinitrogen oxide)と呼び、一酸化二窒素(いっさんかにちっそ、英語: dinitrogen monoxide)も使用される。 ヒトが吸入すると、陶酔させる作用があることから、笑気ガス(しょうきガス。英語: laughing gas)とも言い、笑気と略されることもある。また麻酔作用もあるため、全身麻酔で医療用途で用いており、世界保健機関においては必須医薬品の一覧にも載せられている。近年は他に優れた麻酔薬が登場したことなどから、少なくとも日本においては、医療用途は減少の一途を辿っている この他にも、工業用途では燃料の発火促進のために使われる。また調理用途では、食材をムース状に加工するエスプーマと呼ばれる調理法に使用される。 しかし、陶酔感を得るために亜酸化窒素を乱用する者が後を絶たないことから、日本では、2016年(平成28年)2月18日に医薬品医療機器法に基づき「一酸化二窒素(別名:亜酸化窒素)」が指定薬物に指定された。そして、日本では同月28日から、医療などの目的以外に亜酸化窒素を製造・販売・所持・使用することが禁止されるに至った。 なお、亜酸化窒素には、地球の大気に放出されると、紫外線によって分解されて一酸化窒素を生成し、オゾン層を破壊するという作用がある。したがって、亜酸化窒素の使用は、地球のオゾンホール拡大という環境問題も抱えている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロトカテク酸(プロトカテクさん、protocatechuic acid)は、ポリフェノール抗酸化剤の一つ。in vitroまたはin vivoにおいて、通常の細胞および癌細胞との混合効果を有する。ヒト白血病細胞および、ヒトの口腔内から取られる悪性HSG1のアポトーシスを誘導することが報告されているが、TPA-誘導型マウス皮膚腫瘍との混合効果を持つことが分かっている。プロトカテク酸の量と塗布する時間により、腫瘍の成長を減退もしくは増進させることができる。また、神経幹細胞を増殖させ、そのアポトーシスを阻害することが報告されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エラグ酸(エラグさん、英: ellagic acid)は、野菜や果物を含む植物で見つかっている天然フェノール系の抗酸化物質である。エラグ酸が抗癌性と抗酸化性を有しているのではないかとの観点から研究が行われてきた。また美白作用の研究がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    セレン化水素(セレンかすいそ、英: hydrogen selenide)は、化学式が H2Se で表されるセレンと水素の化合物で、カルコゲンの水素化合物(カルコゲン化水素)の一つ。セレンの酸化数は-2。爆発範囲は8.84 - 62.4 vol%。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コレステロール(英: cholesterol)は、ステロイドの中で、ステロールと呼ばれているサブグループに属する有機化合物の一種である。トリテルペノイドの一つでもある。1784年に胆石からコレステロールが初めて単離された。室温で単離された場合は白色ないしは微黄色の固体である。生体内ではスクアレンからプロトステロール(ラノステロールなど)を経て生合成される。 コレステロールは動物細胞にとっては生体膜の必須構成物質であり、さらに細胞内のさまざまなプロセスに関わる主要生体分子の一つである。一方、精製物は化粧品・医薬品・液晶の原材料など工業原料として広く利用されている。コレステロールを含めてステロールは脂質の主要カテゴリの一つを構成する(ステロール脂質)。 いわゆる「善玉/悪玉コレステロール」と呼ばれる物質は、血管中を流れているリポタンパク粒子をあらかじめ高密度リポタンパク質(HDL)と低密度リポタンパク質(LDL)に超遠心分離法または化学的な分別剤を使って分離し、各粒子中のコレステロールを、生化学的分析法で測定したもので、HDL中のコレステロールを善玉、LDL中のコレステロ-ルを悪玉と呼称し、決してコレステロール自体に差があるというものではない。最近はコレステロールそのものの違いより、リポタンパク質の「質」の違いにより動脈硬化性疾患の治療や予防が行われるようになってきた。 詳細は「脂質異常症」を参照

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カルボシステイン(carbocisteine、carbocysteine)は、去痰薬に用いられる医薬品のひとつ。喀痰の(ねんちょうど)を下げ、その排出を容易にする。慢性閉塞性肺疾患 (COPD)、気管支拡張症、気管支炎などの呼吸器疾患の症状を軽快させる。気管支の分泌を妨ぐ効果がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ハプトグロビン(英: haptoglobin、略称: Hp)は、ヒトではHP遺伝子によってコードされるタンパク質である。血漿中でハプトグロビンは赤血球から放出された遊離ヘモグロビンに高い親和性で結合し、その有害な酸化活性を阻害する。一方類似した機能を持つヘモペキシンは遊離ヘムに対して結合する。ハプトグロビン-ヘモグロビン複合体はその後、細網内皮系(主に脾臓)によって除去される。 臨床現場では、ハプトグロビンアッセイは血管内溶血性貧血のスクリーニングとモニタリングに利用される。では、遊離ヘモグロビンが血液循環へ放出され、そこにハプトグロビンが結合する。これによってはハプトグロビン値の低下が引き起こされる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サリチルアミド(英: Salicylamide)は非ステロイド性抗炎症薬(NSAIDs)の一種。CAS登録番号は65-45-2。2-ヒドロキシベンズアミドとも呼ばれる。神経痛、筋肉痛、関節リウマチの痛みや炎症を緩和する効能がある。また、本薬はより一般的な NSAIDs であるエテンザミドの活性代謝物でもある(ただし、同薬のプロドラッグというわけではない)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ステアリン(Stearin)またはトリステアリン(Tristearin)、グリセリルトリステアラート(Glyceryl tristearate、トリステアリン酸グリセリル)は、3つのステアリン酸ユニットからなるトリグリセリドである。ほとんどのトリグリセリドは、少なくとも2つ以上、通常は3つの異なる脂肪酸に由来する。他のトリグリセリドと同様に、ステアリンは3つの多形で結晶化する。ステアリンの場合、融点はそれぞれ54℃(α型)、65℃、72.5℃(β型)である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アンドロステンジオン(Androstenedione)は、副腎、性腺で生産される19炭素のステロイドホルモンで、テストステロン、エストロン、エストラジオールのそれぞれの生合成経路の中間生成物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    活性化誘導シチジンデアミナーゼ(かっせいかゆうどうシチジンデアミナーゼ、Activation-Induced (Cytidine) Deaminase、AID)は、DNA中のシチジン基からアミノ基を取り除く(脱アミノ)、24 kDaの酵素である。 AIDは現在、二次抗体多様化のマスター制御因子であると考えられている。AIDがその開始に関与しているのは、3つに分かれた免疫グロブリン(Ig)多様化プロセス、体細胞超変異(SHM)、(CSR)、遺伝子変換(GC)である。 AIDは一本鎖DNA上でアクティブになることがin vitroで示されており、また、その脱アミノ活性を発揮するには活性を必要とすることが示されている。 シス因子の関与は疑われており、AID活性は、AID活性への関与が知られる他のゲノム領域よりも免疫グロブリン"可変"領域中で数段強くなっている。これは、人工的なレポーター遺伝子構造とゲノムに統合されてきた(トランスジーン)からも真である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アンチトロンビン(英: antithrombin、略称: AT)は血液凝固系のいくつかの酵素を不活性化するタンパク質であり、ヒトではSERPINC1遺伝子にコードされる。アンチトロンビンは肝臓で産生される糖タンパク質で、432アミノ酸からなる。3つのジスルフィド結合を含み、4か所のグリコシル化部位が存在する。α-アンチトロンビンは血漿中で優勢な形態のアンチトロンビンで、4つのグリコシル化部位のそれぞれにオリゴ糖が付加されている。より少ない形態であるβ-アンチトロンビンでは、1ヶ所のグリコシル化部位が常に修飾されていない状態である。アンチトロンビンの活性は抗凝固薬であるヘパリンによって何倍にも増大する。ヘパリンはアンチトロンビンの第IIa因子(トロンビン)や第Xa因子への結合を強化する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1-ペンタノール (1-pentanol) は、炭素が5個の直鎖アルコール、有機化合物。無色油状で不快な臭いを呈する。ペンチルアルコール(アミルアルコール)の8種類の構造異性体のうちのひとつ。別名としてn-ペンチルアルコール (n-pentyl alcohol)、n-アミルアルコール (n-amyl alchol)。消防法に定める第4類危険物 第2石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サクラネチン(Sakuranetin)は、フラバノンの一種である。キク科のSmallanthus fruticosusやコメに含まれ、イネいもち病菌の胞子発芽に対するファイトアレキシンとして働く。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メチルマロニルCoAムターゼ(英: Methylmalonyl Coenzyme A mutase)は、メチルマロニルCoAをスクシニルCoAへの異性化を触媒する酵素であり、主要な代謝経路に含まれている。これが機能するためには、ビタミンB12誘導体補因子であるアデノシルコバラミンが必要である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    6,7-ジメチル-8-リビチルルマジン(6,7-dimethyl-8-ribityllumazine)は、リボフラビンの前駆体の一つ。(EC 2.5.1.9)によって作用する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセツル酸 (Aceturic acid) またはN-アセチルグリシン (N-acetylglycine) は、アミノ酸のグリシンの誘導体である。塩またはエステルはaceturatesと呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒドロキシキノール(hydroxyquinol)は、ベンゼントリオールの一つ。Bradyrhizobium japonicumによるカテキンの分解により生成する。ヒドロキシキノール-1,2-ジオキシゲナーゼによりに酸化される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トルレスタット(Tolrestat)は、である。糖尿病の合併症コントロール用に承認されている。 いくつかの国で販売の承認を受けているが、アメリカ合衆国では、その毒性のために第III相臨床試験に合格せず、アメリカ食品医薬品局に承認されていない。肝臓に重大な毒性を持つリスクがあり死に至る可能性もあることから、ワイスは1997年に廃止を決めた。Alredaseの商標名で販売されていた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ソルビトール (sorbitol) はグルコースを還元し、アルデヒド基をヒドロキシ基に変換して得られる糖アルコールの一種。ソルビット (sorbit) またはグルシトール (glucitol) ともいう。甘味があり、食品添加物などに用いられる。 バラ科ナナカマド属 (Sorbus) の植物から発見された糖アルコールのため、ソルビトールと命名された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ケイ皮酸(ケイひさん、桂皮酸、cinnamic acid)とは、示性式C6H5CH=CHCOOH で表される、芳香族不飽和カルボン酸に分類される有機化合物である。IUPAC系統名は 3-フェニル-プロパ-2-エン酸 (3-phenyl-prop-2-enoic acid)。分子量は 148.16、CAS登録番号は [621-82-9]。β-フェニルアクリル酸とも表される。植物界に広く存在する。 シス-トランス異性体の双方をケイ皮酸と呼ぶことも多いが、狭義には E体のみをケイ皮酸と呼び、Z体はアロケイ皮酸と呼ばれる。アロケイ皮酸は不安定で容易に E体へと異性化する。 シンナムアルデヒドの酸化によって作ることができるが、工業的にはベンズアルデヒドと無水酢酸に酢酸カリウムを作用させるパーキン反応によって作られる。ケイ皮酸はフェニルプロパノイドの一種であり、天然に存在するケイ皮酸は、フェニルアラニンがフェニルアラニンアンモニアリアーゼによる脱アミノ化を受けることで生成する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    酪酸(らくさん、英: butyric acid,英語発音: [bjuːˈtɪrɪk ˈæsɪd])、IUPAC名ブタン酸 (英: butanoic acid) もしくはn-ブタン酸 (英: n-butyric acid) は、分子式 C4H8O2、示性式 CH3(CH2)2COOH の直鎖カルボン酸である。構造異性体にイソ酪酸 (CH3)2CHCOOH がある。 哺乳類は極微量でも酪酸の臭いを探知することができ、イヌでは 10 ppb、ヒトでも 10 ppm まで感知することができる。特有の不快臭を有する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    α-ケト酪酸(α-ケトらくさん、α-Ketobutyric acid)または、2-オキソ酪酸(2-oxobutyric acid)は、(EC 4.4.1.1)によってシスタチオニンから合成されるアミノ酸代謝の代謝中間体である。また、トレオニンの分解生成物でもある。 2-オキソ酪酸シンターゼ(EC 1.2.7.2)によってプロピオニルCoAに変換されクエン酸回路に参加する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コルチコステロン (corticosterone) は、副腎皮質で合成される副腎皮質ホルモンのうち、21炭素のステロイド系ホルモンである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クリプトン(英: krypton)は原子番号36の元素。元素記号は Kr。貴ガス元素の一つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    Mdm2はがん抑制因子であるp53の活動を抑制的に調節するタンパク質で、ヒトではMDM2遺伝子にコードされる。Mdm2タンパク質は、p53のN末端のトランスアクティベーションドメイン(TAD)を認識するE3ユビキチンリガーゼとして、またp53の転写活性化の阻害因子として機能する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リン酸トリエチル(Triethyl phosphate)は、(C2H5)3PO4の化学式を持つ有機化合物である。無色の液体である。リン酸とエタノールのエステルである。消防法に定める第4類危険物 第3石油類に該当する。 主な用途は、無水酢酸の工業合成における触媒、樹脂ポリマーの重合調整剤、非飽和ポリエステル等の可塑剤等である。小規模では、アセチルセルロース等の溶媒、難燃剤、殺虫剤その他の化合物の合成中間体、過酸化物の安定剤、ビニルポリマーや非飽和ポリエステル等のゴムやプラスチックの強化剤等である。 リン酸トリエチルは、農薬の合成の中間体としても用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    TAPS (トリス(ヒドロキシメチル)メチル-3-アミノプロパンスルホン酸、英語: [tris(hydroxymethyl)methylamino]propanesulfonic acid) は緩衝剤として利用される化合物の一つである。Co(II)やNi(II)を含む2価カチオンと化学結合する。25℃下でイオン強度I=0の時のTAPSのpKaは8.44のため、TAPSの有効緩衝域はpH7.7–9.1である。緩衝液のpHやI ≠ 0の時のpKa は濃度や温度により変化する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホスミドマイシン (fosmidomycin) は、ストレプトミケス属バクテリアの培養液から単離された抗生物質の一つである。イソプレノイド生合成の非メバロン酸経路の鍵酵素であるDXPレダクトイソメラーゼを特異的に阻害する。Ki値はE. coli酵素に対して38 nM、結核菌酵素に対して80 nM、フランシセラ属 (Francisella) 酵素に対して99 nMである。 マラリア原虫における非メバロン酸経路の発見はホスミドマイシンやその他の阻害剤が抗マラリア剤として使用できることを示している。実際に、ホスミドマイシンはマラリア治療のためのクリンダマイシンとの併用療法が試験され、好ましい結果を収めた。熱帯熱マラリア原虫 (Plasmodium falciparum) において、標的酵素(DXPレダクトイソメラーゼ)のコピー数の増加がin vitroにおけるホスミドマイシン耐性と相関することが示されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ラノステロール (lanosterol) は、動物や菌類に広く存在するステロイド、トリテルペノイドの一つ。化学式 C30H50O、分子量は426.7。IUPAC命名法ではラノスタ-8,24-ジエン-3-オール。別名ラノステリン。CAS登録番号は79-63-0。常温では無色の固体で、融点は138-140℃。ラノリンに多量に存在し、そこから発見されたことから命名された。 動物や菌類(オピスタコンタと総称される)のあらゆるステロイド化合物(コレステロール等)の前駆体として重要であるが、生理学的な役割は定かでない。ステロイド生合成経路において、シクロアルテノールとともに、前駆体(オキシドスクアレン)の環化によって生成する最初のステロール(プロトステロール)の一つである。すべてのステロイド化合物は、ラノステロールもしくはシクロアルテノールのその後の修飾により生成する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    テトラヒドロピラン(Tetrahydropyran,THP)は、炭素5つと酸素1つの飽和六員環からなる有機化合物である。 テトラヒドロピラン環はピラノースの基本骨格となっている。 有機合成では、2-テトラヒドロピラニル基はアルコールの保護基として用いられる。アルコールをジヒドロピランと反応させるとテトラヒドロピラニルエーテルが得られ、様々な反応からアルコールを保護する。その後酸加水分解によってテトラヒドロピラニル基が外され、5-ヒドロキシペンタナールとなる。 テトラヒドロピランの古典的な有機合成法には、ラネー合金によるジヒドロピランへの水素化がある。 消防法に定める第4類危険物 第1石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    バルデナフィル(英: Vardenafil)は、 勃起不全の治療に使用されるPDE5阻害剤(ホスホジエステラーゼ5阻害剤、PDE-5)で、レビトラ(Levitra) 、スタキシン(Staxyn) 、およびビバンザ(Vivanza)という商品名で販売されていたが、2022年に先発医薬品は販売終了し、後発医薬品のみ存在している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミトキサントロン(Mitoxantrone)はアントラキノン系の癌化学療法剤の一つである。商品名ノバントロン。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジメチル尿素(Dimethylurea)は、有機合成化学の中間体として用いられる尿素の誘導体である。IUPAC名は、1,3-ジメチル尿素である。毒性のほとんどない無色の結晶性粉末である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    バイカレイン(英: baicalein)は、コガネバナから単離されたフラボンのひとつ。でも報告されている。この化合物は、バイカリンのアグリコンである。 バイカレインはGABAA受容体のベンゾジアゼピン部位及び/もしくは非ベンゾジアゼピン部位におけるポジティブアロステリックモジュレーターである。α2およびα3サブユニットを含むGABAA受容体のサブタイプに対する選択性を示す。マウスによる実験では、バイカレインは鎮静や筋弛緩の発生なしに抗不安効果を示す。また、他のフラボノイドとともに、S. baicalensisおよびS. lateriflora(スカルキャップ)の抗不安効果の基礎となっていると考えられている。 特定の種類のリポキシゲナーゼを阻害し、抗炎症薬作用を持つことが示されている。また、TRPC1チャネルの発現を阻害することで、ET-1誘導による肺動脈平滑筋の増殖を抑制する効果を持つ。動物実験では、抗うつ薬作用も示されている。 バイカレインは、体内で薬剤を代謝するシトクロムP450系の酵素の作用を阻害する。バイカレインの誘導体には、阻害剤として知られているものがある。 漢方薬である小柴胡湯の有効成分の1つである。 鉄に対する比較的強いキレート作用があるとの報告がある。また、活性酸素を産生するフェントン反応を抑える性質があると示唆された。 アミロイドーシスによるアルツハイマー病を改善すると示唆される研究が中国でなされた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒポキサンチン-グアニンホスホリボシルトランスフェラーゼ(英: Hypoxanthine-guanine phosphoribosyltransferase; HGPRTはプリン代謝に関わる酵素の1つ。酵素学的にはヒポキサンチンホスホリボシルトランスフェラーゼ(hypoxanthine phosphoribosyltransferase, HPRT)と呼び、系統名はIMP:diphosphate phospho-D-ribosyltransferaseである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウラシル (uracil) はリボ核酸を構成している 4種類の主な塩基のうちのひとつ。ピリミジン塩基である。IUPAC名はピリミジン-2,4(1H,3H)-ジオン (pyrimidin-2,4(1H,3H)-dione)。分子量は 112.09、CAS登録番号は [66-22-8]。右図の構造のほか、互変異体として、ヒドロキシピリミジノン構造、2,4-ジヒドロキシピリミジン構造をとることができる。 ウラシルから誘導されるヌクレオシドはウリジンである。二本鎖リボ核酸ではアデニンと2つの水素結合を介して塩基対を形成している。塩基配列では U と略記される。 核酸を構成する 5種類の主な塩基(ウラシル、アデニン、グアニン、シトシン、チミン)のうち、ウラシルはリボ核酸 (RNA) 中に主に存在し、デオキシリボ核酸 (DNA) にはほとんど存在しない。DNA 中ではウラシルの代わりに、5位にメチル基が置換したチミンが存在している。 ウラシルの 5位にフッ素が導入されたフルオロウラシル (5-FU) は抗がん剤として使われている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-キノロン(4-Quinolone)は、キノリン誘導体の有機化合物である。この物質とがキノロン類の2つの重要な親化合物である。互変異性体の(CAS#611-36-9)と平衡状態にある。教育上の興味の他にはあまり固有の価値を持たないが、その誘導体であるニューキノロンは、合成抗菌薬の大きな分類の1つである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホスホエノールピルビン酸(ホスホエノールピルビンさん、phosphoenolpyruvic acid, PEP)は、生化学的に重要な有機化合物の一つである。-62KJ/molと生体中で最もエネルギーの高いリン酸結合を持ち、解糖系や糖新生の経路にも登場する。また植物では、様々な芳香族化合物の生合成や炭素固定にも関わっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クリシン(Chrysin)は、フラボンの1つで、トケイソウや、で見られる。ヒラタケやにも含まれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グアノシン〈Guanosine〉はグアニンにリボース環がβ-N9-グリコシド結合で構成されたヌクレオシドである。 グアノシンはリン酸化されてGMP〈グアニル酸〉、cGMP〈環状グアノシン一リン酸〉、GDP〈グアノシン二リン酸〉そしてGTP〈グアノシン三リン酸〉 グアニンがデオキシリボース環に結合したものが、デオキシグアノシンと呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イソペンテニル二リン酸(イソペンテニルにリンさん、isopentenyl diphosphate、IPP)は、テルペンおよびテルペノイド(イソプレノイド)生合成に必要な2つの前駆物質(イソプレン単位)のうちの一つである。もう一つはIPPの異性体であるジメチルアリル二リン酸(DMAPP)。メバロン酸経路または非メバロン酸経路により最終生成物の一つとしてDMAPPとともに合成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メクロフェナム酸(Meclofenamic acid)は、関節や筋肉の痛み、関節炎、月経困難症の治療に用いられる薬剤である。Meclomenの商標名で販売される。非ステロイド性抗炎症薬であり、1980年にアメリカ食品医薬品局に認可された。 この物質は、プロスタグランジンの合成を阻害する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    SAMHD1(SAM domain and HD domain-containing protein 1)は、ヒトではSAMHD1遺伝子にコードされるタンパク質である。SAMHD1は細胞内酵素であり、樹状細胞、マクロファージ、単球、休止期のCD4+T細胞中でのHIVの複製の遮断を担う。ホスホヒドロラーゼ(リン酸加水分解)活性を示す酵素であり、デオキシリボヌクレオシド三リン酸(dNTP)を無機三リン酸(iPPP)と2'-デオキシヌクレオシド(リン酸基を持たないデオキシヌクレオシド)へ変換する。SAMHD1はこの反応によってdNTPのプールを枯渇させ、ウイルスのcDNA合成の際の逆転写酵素による利用を防ぐことでウイルスの複製を防ぐ。また、SAMHD1はヌクレアーゼ活性も示す。HIV-1の感染制限にはリボヌクレアーゼ活性が必要であることが記載されたものの、近年のデータではSAMHD1による細胞内でのHIV-1の制限にはリボヌクレアーゼ活性は関与していないことが確認されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エリトラン (Eritoran, E5564) は、細菌の感染に対する過剰炎症反応である重症敗血症に対する治療薬候補である。エーザイによって開発されている(開発コード: E5564)。1999年から治験が開始され、2010年現在、第III相臨床試験が行われている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    モノヨードチロシン(Monoiodotyrosine)は、甲状腺ホルモンの前駆体で、チロシンのフェノール環のメタ位にヨウ素が配位した物質である。2分子が結合して3,3'-ジヨードチロニンを形成する。また甲状腺のコロイド中ではさらに1分子がジヨードチロシンに結合してトリヨードチロニンとなる。 "MIT"と略される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    PLK1(polo-like kinase 1)またはSTPK13(serine/threonine protein kinase 13)は、ヒトではPLK1遺伝子によってコードされる酵素(プロテインキナーゼ)である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サルコシン(sarcosine)またはN-メチルグリシン(英: N-methylglycine, NMG)は、筋肉やその他体内組織に見られる天然のアミノ酸で、コリンからグリシンへの代謝中間体である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リネゾリド(INN:linezolid)は、抗菌薬の1種である。分子構造にを持つため、オキサゾリジノン系合成抗菌薬に分類される。注射以外に経口投与でも使用可能である。商品名、ザイボックス。VREやMRSA感染症を適応とする。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メロキシカム(Meloxicam)は、鎮痛剤及び解熱剤の効果を持つ非ステロイド性抗炎症薬である。オキシカムの誘導体で、ピロキシカムと近い関係にあり、エノール型である。ベーリンガーインゲルハイムが開発した。メロキシカムは、投与後、約30分から60分で痛みを緩和し始める。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メタンフェタミン(英語: methamphetamine, methylamphetamine)は、アンフェタミンの窒素原子上にメチル基が置換した構造の有機化合物である。間接型アドレナリン受容体刺激薬として中枢神経興奮作用はアンフェタミンより強く、強い中枢興奮作用および精神依存性、薬剤耐性がある。日本では商品名ヒロポンで販売されているが、現在は「限定的な医療・研究用途での使用」のみに厳しく制限されている。 日本では覚醒剤取締法を制定し、覚醒剤の取扱いを行う場合の手続きを規定するとともに、それ以外の流通や使用に対しての罰則を定めている。メタンフェタミンはこの取締法におけるフェニルメチルアミノプロパンであり、日本で薬物乱用されている覚醒剤である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アルプラゾラム(英: alprazolam)は、ベンゾジアゼピン系の短期間作用型抗不安薬および筋弛緩薬の一種。半減期は約14時間。日本では商品名ソラナックス、コンスタンで知られ、後発医薬品も多数出ており、適応は、心身症(日本では胃・十二指腸潰瘍、過敏性腸症候群、自律神経失調症)における身体症状と不安・緊張・抑うつ・睡眠障害である。 連用により依存症、急激な量の減少により離脱症状を生じることがある。向精神薬に関する条約のスケジュールIVに指定されている。麻薬及び向精神薬取締法の第三種向精神薬である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アシフルオルフェン(acifluorfen)は、除草剤の一つ。被子植物の雑草に効果があり、大豆、落花生、エンドウ、イネの栽培に使われる。モービル・ケミカル社(現 バイエルクロップサイエンス社)及び社により開発されたジフェニルエーテル系除草剤であり、ナトリウム塩として利用される。プロトポルフィリノーゲンオキシダーゼ阻害剤の作用を持ち、茎葉及び根から吸収されるが、体内移行はほとんどない。アメリカ合衆国では1980年に初回農薬登録されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デスモプラキン(英: desmoplakin)は、ヒトではDSP遺伝子によってコードされるタンパク質である。デスモプラキンは心筋と表皮細胞のデスモソーム構造の重要な構成要素であり、隣接する細胞との接着の構造的完全性を維持する機能を持つ。心筋では、デスモプラキンは介在板に局在する。介在板は心筋細胞を機械的に共役させ、協調的な合体構造を形成する。デスモプラキンの変異は、拡張型心筋症、、、、などに関与していることが示されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロロギ酸ベンジル (benzyl chloroformate) とは、クロロギ酸エステルの一種で、ベンジルエステル。外見は無色~淡黄色の油状で、刺激臭を持つ。消防法による第4類危険物 第1石油類に該当する。有機合成において、ベンジルオキシカルボニル基 (Cbz, Z) によりアミンなどを保護する際に試薬として用いられる。構造式上では Z-Cl, Cbz-Cl などと略記される。 上式のように保護されたアミノ基は、加水素分解により脱保護できる。水素ガスとパラジウム炭素が用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シタラビン (英語: Cytarabine) とは、抗悪性腫瘍剤(抗がん剤)の一種。シトシンアラビノシド(Cytosine arabinoside)とも呼ばれる。商品名はキロサイド(Cylocide)。 Ara-CまたはAraCという略号で表されることがある。核酸シトシンの誘導体である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    上皮成長因子受容体(じょうひせいちょういんしじゅようたい、Epidermal Growth Factor Receptor; EGFR)は、細胞の増殖や成長を制御する上皮成長因子 (EGF) を認識し、シグナル伝達を行う受容体である。チロシンキナーゼ型受容体で、細胞膜を貫通して存在する分子量170 kDa(キロダルトン)の糖タンパクである。HER1、ErbB1とも呼ばれる。 EGFRの発現は上皮系、、神経系起源の多様な細胞でみられる。細胞膜上にあるこの受容体に上皮成長因子 (EGF) が結合すると、受容体は活性化し、細胞を分化、増殖させる。正常組織において細胞の分化、発達、増殖、維持の調節に重要な役割を演じているが、このEGFRに遺伝子増幅や遺伝子変異、構造変化が起きると、発癌、および癌の増殖、浸潤、転移などに関与するようになる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シトルリン(Citrulline)とは、アミノ酸の1種で、尿素回路を構成する化合物のひとつである。1930年に日本でスイカの中から発見され、そのラテン語citrullusに因んで名づけられた。動物、特に哺乳類で広く存在する。化学式はC6H13N3O3、IUPAC命名法では2-アミノ-5-(カルバモイルアミノ)ペンタン酸であり分子量は175.2g/mol。CAS登録番号は[372-75-8]である。 ミトコンドリアでオルニチントランスカルバモイラーゼによって触媒される、オルニチンとカルバモイルリン酸の反応でリン酸と共に生成する。またサイトソルでアスパラギン酸、ATPと反応しオルニチンとAMP、ピロリン酸となる。この反応はによって触媒されるがこの酵素が欠けていると血中にシトルリンが蓄積し、また尿中に排出されるようになってシトルリン血症(シトルリン尿症)を発症する。 シトルリンはコドンで指定されているアミノ酸ではないため、遺伝子転写には用いられない。転写直後はタンパク質に含まれないが、タンパク質中のアルギニン残基がによってシトルリンに変えられる。また関節リウマチ患者の80%はシトルリンを含むフィラグリンに免疫反応を示すため、抗環状シトルリン化ペプチド抗体が診断に用いられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    環状アデノシン一リン酸[かんじょうアデノシンいちリンさん、cyclic AMP, cAMP(サイクリックエーエムピー)、環状AMP、3',5'-アデノシン一リン酸]は、アデノシン三リン酸 (ATP) から合成され、リボースの3' および5' 位とリン酸基が環状になっている分子である cAMPは、グルカゴンやアドレナリンといったホルモン伝達の際の細胞内シグナル伝達においてセカンドメッセンジャーとして働く。細胞膜を通り抜ける事はできない。その主な作用はタンパク質リン酸化酵素(タンパク質キナーゼ)の活性化で、これはイオンチャネルを通して、Ca2+の通過を調節する事にも使われる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ニトログリセリン(英: nitroglycerin)とは、有機化合物で、爆薬の一種であり、狭心症治療薬としても用いられる。 グリセリン分子の3つのヒドロキシ基を、硝酸と反応させてエステル化させたものだが、これ自身は狭義のニトロ化合物ではなく、硝酸エステルである。また、ペンスリットやニトロセルロースなどの中でも「ニトロ」と言われたら一般的にはニトログリセリン、またはこれを含有する狭心症剤を指す。甘苦味がする無色油状液体。水にはほとんど溶けず、有機溶剤に溶ける。 わずかな振動で爆発することもあるため、取り扱いはきわめて難しいが、一般的に原液のまま取り扱われるようなことはなく、正しく取り扱っていれば爆発するようなことは起きない。昔は取り扱い方法が確立していなかったため、さまざまな爆発事故が発生していた。実際の爆発事故は製造上の欠陥か取り扱い上の問題がほとんどである。日本において原液のまま工場から出荷されることはない。綿などに染みこませて着火すると爆発せずに激しく燃焼するが、高温の物体上に滴下したり金槌で叩くなど強い衝撃を加えると爆発する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デヒドロエピアンドロステロン(Dehydroepiandrosterone、略称 DHEA)とは、副腎や性腺で産生される男性ホルモンの一種である。アンドロゲン(男性ホルモン)活性としてはテストステロンの約5%である。成人女性においては、アンドロステンジオンとともに主要なアンドロゲンとして重要である。 昭和の時代、前立腺癌増殖は男性ホルモンの中で最も生理活性が高いテストステロンによって促進されると考えられていた。1993年頃になると前立腺細胞内においては、男性ホルモンの15%程度が DHEA と言われていたが、前立腺癌診療ガイドライン(2006年版、日本泌尿器科学会編)にはその40%を占めると述べられている。泌尿器科医師による前立腺癌の存在を否定されていない壮年男子が DHEAサプリメントを服用した場合、もし前立腺癌が存在すれば増殖を促進させてしまうことが危惧されている。 DHEAはテストステロンやエストラジオールと同様に性ステロイドホルモンであり、生体内でコレステロールを原料として生合成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセチルコリン(英語: Acetylcholine, ACh)は、副交感神経や運動神経の末端から放出され、神経刺激を伝える神経伝達物質である。コリンの酢酸エステル化合物。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    セルロプラスミン (ceruloplasminまたはcaeruloplasmin)は、公式にはフェロキシダーゼ (ferroxidase) または鉄(II):酸素-オキシドリダクターゼとして知られている。 血液中に見られる銅輸送タンパクであり、酵素である。(EC 1.16.3.1) 4 Fe2+ + 4 H+ + O2 4 Fe3+ + 2H2O

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2-(2-エトキシエトキシ)エタノール(2-(2-ethoxyethoxy)ethanol)は、工業的溶媒の一つ。カルビトール(Carbitol)、カルビトールセロソルブ(Carbitol cellosolve)、トランスクトール(Transcutol)、ジオキシトール(Dioxitol)、ポリソルブ(Poly-solv)、ドワナール(Dowanal) などの別名・商標名がある。無色透明の吸湿性・可燃性の液体である。アルコールとエーテル基があり、トリエチレングリコールのヒドロキシル基の一つが欠落した構造をしており、化学式はCH3CH2OCH2CH2OCH2CH2OHである。 直接触れると脂肪の浸出により皮膚が乾燥し、また、目をやや刺激する。 消防法に定める第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ガラクツロン酸(ガラクツロンさん、galacturonic acid)はガラクトースが酸化されたウロン酸で分子式 C6H10O7、分子量 194.14、D体のCAS登録番号は [685-73-4]、L体は [108729-78-8]。 天然にはD体のみが存在し、重合体であるポリガラクツロン酸はペクチンの主成分として知られる。単独での生化学的な役割は知られていないが、多糖の構成成分として植物に広く存在する。ポリガラクツロン酸の酸加水分解またはによる分解で得られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    PPARGC1AまたはPGC-1α(peroxisome proliferator-activated receptor gamma coactivator 1-alpha)は、ヒトではPPARGC1A遺伝子にコードされるタンパク質である。PPARGC1Aはhuman accelerated regionと呼ばれる、チンパンジーとの共通祖先からの分岐以降に塩基置換率が加速しているゲノム領域(HAR20)と関係しており、そのため類人猿からヒトの分岐に重要な役割を果たした可能性がある。 PGC-1αは、のである。また、PGC-1αは肝臓における糖新生の主要な調節因子であり、糖新生のための遺伝子発現の増加などを担う。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    第V因子(だい5いんし、英: factor V)は、凝固系を構成するタンパク質で、稀にプロアクセレリン(proaccelerin)または 不安定凝固因子(labile factor)と呼ばれることもある。他の凝固因子とは対照的に、第V因子は酵素活性を持たず、コファクター(補因子)として機能する。第V因子の欠乏は出血の素因となり、一部の変異(最も有名なものは(factor V Leiden))は血栓症の素因となる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    sn-グリセロール1-リン酸(グリセロール1-りんさん、sn-glycerol 1-phosphate)は、リン酸とグリセロールから誘導されたリン酸エステルで、アーキア特異的エーテル型脂質の構成要素の一つである。同等に適切な名前として、グリセロ-1-リン酸(glycero-1-phosphate)、1-O-ホスホノグリセロール(1-O-phosphonoglycerol)、1-ホスホグリセロール(1-phosphoglycerol)がある。また歴史的経緯によりL-グリセロール1-リン酸(L-glycerol 1-phosphate)、D-グリセロール3-リン酸(D-glycerol 3-phosphate)、D-α-グリセロリン酸(D-α-glycerophosphoric acid)とも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オカダ酸(オカダさん、okadaic acid)は分子式C44H68O13で表されるポリエーテルの一種である。CAS登録番号は [78111-17-8]、カリウム塩は [155751-72-7]。 オカダ酸は、有毒渦鞭毛藻により産生される毒素である。この藻類を餌とする二枚貝の中腸腺にオカダ酸が蓄積されることで、下痢性の食中毒を引き起こす原因となる。類似化合物にジノフィシストキシン (dinophysistoxin, DTX) があり、同様に中毒を引き起こす。 単体は白色の結晶状固体。オカダ酸はC38脂肪酸の派生物質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピリドキシン (pyridoxine) は、ビタミンB群の中のビタミンB6に分類される化合物の1つである。ビタミンB6に分類される化合物としては、他にピリドキサールとピリドキサミンが挙げられる。ただし、ピリドキシンの活性型は、ピリドキサールリン酸である。ピリドキシンはでリン酸化されて、さらにによって酸化され、ピリドキサールリン酸に変換されるなどして利用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジヒドロキシアセトンリン酸(ジヒドロキシアセトンリンさん、英: Dihydroxyacetone phosphate, DHAP)は、カルビン回路から脂質の合成まで生化学的な多くの反応に関与している有機化合物である。特に解糖系で重要な役割を果たしている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウンデシル酸(Undecylic acid)は、化学式CH3(CH2)9COOHの天然に存在する11炭素長の飽和カルボン酸である。系統名は、ウンデカノン酸(undecanoic acid)である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ディート(DEET)とは、昆虫などの忌避剤(虫よけ剤)として用いられる化合物である。IUPAC名は N,N-ジエチル-3-メチルベンズアミドだが、N,N-ジエチル-m-トルアミドとも呼ばれる。分子量 191.27。凝固点 −45 ℃、沸点 285 ℃で、常温では無色液体である。水には溶けにくくアルコールなどの有機溶媒によく溶ける。CAS登録番号 [134-62-3]。消防法に定める第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スクシニルCoA(スクシニルこえー、スクシニルこえんざいむえー、succinyl-CoA、SucCoA)は、コハク酸と補酵素Aからなる有機化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アゾキシストロビン(英: Azoxystrobin)は系の殺菌剤。カビから農作物を守るために使われる。食品添加物の場合は防カビ剤。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エストロン(英: Estrone:E1)は、エストロゲンの一種。分子式はC18H22O2。性質等についてはエストロゲンに詳しい。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2-メチルインドール(2-methylindole)またはメチルケトール(methylketol)は中程度の毒性と若干の引火性のある有機化合物である。白色の固体であるが、時間が経過すると茶色に変わる。化学式はC9H9Nと表される。 染料、顔料、蛍光染料および医薬品の合成に用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プラゾシン(Prazosin)は、高血圧や前立腺肥大症の治療に用いられる交感神経遮断薬の一つである。商品名ミニプレス。外国では、不安、PTSD、パニック障害の軽減にも用いられる。交感神経α受容体遮断薬に分類され、α1受容体に特異的に作用する。α1受容体はに存在し、ノルアドレナリンの作用の一つである血管収縮作用を司っている。α1受容体は中枢神経系にも存在する。 α受容体遮断活性に加え、プラゾシンは(ヒトには存在しない)の遮断活性を持つ。およびへの選択性は低い。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イダルビシン(Idarubicin)またはイダマイシン(Idamycin)は、4-デメトキシダウノルビシン(4-demethoxydaunorubicin)とも呼ばれるアントラサイクリン系抗生物質であり、抗悪性腫瘍活性を持つ。DNAにインターカレートしトポイソメラーゼIIを阻害する。ダウノルビシンの類縁体だが、メトキシ基がないため脂溶性が高く容易に細胞に取り込まれる。他のアントラサイクリン系薬剤と同様、クロマチンからのヒストンの退避を誘導する。 急性骨髄性白血病の一次治療として、シタラビンと併用される。 急性リンパ性白血病や、慢性骨髄性白血病の急性転化の治療にも使用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ケノデオキシコール酸(ケノデオキシコールさん、英:Chenodeoxycholic acid, CDCA)は、胆汁酸の一種である。ケノデオキシコール酸は、白い結晶物で水に溶けないがアルコールや酢酸には溶け、融点は165-167 °Cである。このカルボン酸塩は、抱合ケノデオキシコール酸と呼ばれている。ケノデオキシコール酸は、肝臓で生成される4大有機酸の一つである。 ケノデオキシコール酸は、肝臓でコレステロールから合成される。それは、アヒルから初めて取り出され、それゆえギリシャ語でアヒルを意味する「ケノ」の名前が付けられた。 この化合物が大腸内の微生物に代謝されると二次胆汁酸であるリトコール酸に変化する。この反応は一部の腸内細菌が有する胆汁酸-7α-デヒドロキシラーゼの酵素によって触媒される。これらの2つの胆汁酸は、タウリン又はグリシンと結合することができる。この結合は肝臓内でより乖離度の高い条件下で行われるため、生成する化合物はイオン化されたままとなる。これらのイオン化した化合物は、消化器官に留まり回腸まで達し、そこで再吸収される。化合物の結合の目的は、回腸に至るまでの消化器官における脂質の吸収を手助けし続けるためである。一箇所に細菌叢が停滞して留まること(ブラインドループ症候群)により微生物が小腸で異常増殖する場合、微生物が結合した胆汁酸を分離し脂質の消化吸収を妨げる。この症状は脂肪便を発現させる。 ケノデオキシコール酸とコール酸は、ヒトにおいて最も重要な胆汁酸である。その他の哺乳類では、デオキシコール酸の生成のほうが優勢である。ヒトでの代表的な2つの胆汁酸は、コール酸とケノデオキシコール酸である。ヒトの胆汁酸の比率は、一次胆汁酸であるコール酸(80%)、ケノデオキシコール酸(2%)、腸内細菌により7-α-デヒドロキシ化された二次胆汁酸である、デオキシコール酸(15%)、リトコール酸(微量)である。 * ケノデオキシコール酸 * リトコール酸

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロルテトラサイクリン(Chlortetracycline)は、テトラサイクリン系抗生物質の一つ。テトラサイクリンの水素の一つを塩素に置換した構造である。の持つ商標名は、オーレオマイシン(Aureomycin)である。同定された最初のテトラサイクリンであり、1945年、Yellapragada Subbarowの指導の下、レダリー・ラボラトリーのが発見した。ダッガーは、ミズーリ大学ので採取したサンプル中の放線菌がこの物質を生産することを明らかにした。この菌はStreptomyces aureofaciensと名付けられ、単離された物質はその金色からオーレオマイシンと名付けられた。 獣医学の領域で、クロルテトラサイクリンはネコの結膜炎の治療に用いられる。 日本では、クロルテトラサイクリン塩酸塩が、牛、豚及び鶏を対象に、クロルテトラサイクリン塩酸塩とスルファジミジンの配合剤が豚を対象に承認されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リノール酸(リノールさん、英: linoleic acid、数値表現 18:2(n-6)または18:2(Δ9,12))は、炭素数18の不飽和脂肪酸の1種である。9位と12位に炭素炭素間のシス型二重結合を2つ持っており、18:2(n-6) とも表記される n-6系の多価不飽和脂肪酸であり、ヒトの体内で合成できない必須脂肪酸である。 植物または微生物中で、ω6位に二重結合を作るΔ12-脂肪酸デサチュラーゼ によりオレイン酸の二重結合が1個増えてリノール酸が生成される。ヒトを含めた動物はΔ12-脂肪酸デサチュラーゼを有していないので自らリノール酸を合成することができない。 リノール (linoleic) はギリシャ語の linon(亜麻)oleic(油)に由来する。oleic はオレイン酸 (oleic acid) の由来でもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イタコン酸(イタコンさん、Itaconic acid)または、メチレンコハク酸(メチレンコハクさん、methylenesuccinic acid)は、クエン酸の蒸留で得られる有機化合物である。形状は白色結晶粉末で、水やエタノール、アセトンに可溶である。塩またはアニオン、エステルの場合はイタコナート(Itaconate)と呼ぶ。クエン酸の蒸留では他にシトラコン酸とメサコン酸の2種の物質が得られる。 イタコン酸の名称はアコニット酸の語句転綴(アナグラム)から考案された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロパンチオール(Propanethiol)は、化学式C3H8Sで表される有機化合物であり、チオールの一種である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミグリトール(Miglitol)は、複雑な炭水化物をグルコースに分解するのを阻害する経口血糖降下薬である。2型糖尿病の患者で、炭水化物の消化を妨げることによる血糖コントロールのために用いられる。 ミグリトールや構造的に類似したイミノ糖は、α-グルコシダーゼと呼ばれるグリコシダーゼを阻害する。ミグリトールは、炭水化物の消化を阻害して作用するため、食後高血糖症の程度を下げる。主食開始時に摂取することで、最大の効果を発揮する。効果は、食物中に含まれる非単糖炭水化物の量に依存する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェニルアセトアルデヒド (phenylacetaldehyde) は、芳香族アルデヒドのひとつで、アセトアルデヒドのα水素の1つがフェニル基で置換された構造を持つ。 多くの種類の昆虫(チョウ目、ハチ目、甲虫類、アミメカゲロウ目)は、フェニルアセトアルデヒドを交信物質として利用している。マゴットセラピーにおいて抗菌作用を示すことも知られる。 タバコの香りを増すために加えられる。純粋なフェニルアセトアルデヒドの匂いは、蜂蜜のよう、甘い、バラの香り、みずみずしい、草の香り、と表現される。ソバやチョコレートなどの食品や植物にも含まれる。ヒヤシンス、ナルシサス、アカシア、シクラメンなどのフレグランス、ラズベリー、アンズ、サクランボ、スパイスなどのフレーバーの調合原料として用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ニメスリド(Nimesulide)は、比較的選択的にCOX-2を阻害する非ステロイド性抗炎症薬()で、鎮痛解熱作用を有する。その化学構造にスルホンアミド基を有する化合物である。複数の作用機序を有し、効果発現までの時間が短いと云われるが、主にはプロスタグランジンの合成阻害による疼痛・炎症の軽減が機序である。肝毒性のため、多くの国で使用禁止とされている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウロポルフィリノーゲンIIIデカルボキシラーゼ(Uroporphyrinogen III decarboxylase)は、ヒトにおいてはUROD遺伝子に記述されているURODとして知られている酵素である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    システアミン(cysteamine)は、単純なアミノチオールであり、システインが脱炭酸されて生成する。化学式がHSCH2CH2NH2の化合物である。塩酸塩(HSCH2CH2NH3Cl、CAS#[156-57-0])としてしばしば用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アミロライド(英:amiloride)とはカリウム保持性利尿薬のひとつ。ピラジン環とグアニジン構造がアミド結合で結びついた構造を持つ。CAS登録番号は [2016-88-8]。 アミロライドは腎上皮ナトリウムイオンチャネルを阻害することにより利尿作用を示す。このため、水溶液を舌に作用させると塩味が感じられなくなるという性質を持つ(その他に酸味も抑制される)。 2015年現在、日本では認可されていない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ガドリニウム (英: gadolinium [ˌɡædɵˈlɪniəm]) は原子番号64の元素。元素記号は Gd。希土類元素の一つ。ランタノイドに属す。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アントラニル酸(アントラニルさん、anthranilic acid)は芳香族アミノ酸の一種である。哺乳類に対して催乳作用を示すため、ビタミンL1とも呼ばれる。生体内でのトリプトファン合成に関与するシキミ酸経路では、コリスミ酸とグルタミンからアントラニル酸シンターゼによって合成される。また様々なアルカロイドの前駆体となる。一方、トリプトファンの代謝経路であるキヌレニン経路においてキヌレニンより生合成される。メタノールとのエステルであるアントラニル酸メチルはブドウやジャスミンに含まれる香気成分である。 日本においては、1991年(平成3年)に改正された麻薬及び向精神薬取締法で、向精神薬原料に加えられた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エチルアミン (ethylamine) は有機化合物の一種で、第一級アミン。別名をモノエチルアミン。強いアンモニア臭を呈し、ほとんどの溶媒に可溶で弱い塩基性を持つ。工業化学や有機合成の原料として広く用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1,2-ジメトキシエタン(1,2-Dimethoxyethane)は化学式C4H10O2で表されるエーテルの一種である。グリム、モノグリム、ジメチルグリコール、エチレングリコールジメチルエーテル、ジメチルセロソルブといった別名を持ち、DMEと略される。無色透明の液体であり、溶媒として用いられる。水に可溶である。消防法に定める第4類危険物 第1石油類に該当する。 ジエチルエーテルやTHFより沸点の高いエーテル系溶媒としてよく用いられる。二座配位子として、カチオンと複合体を形成する。このためグリニャール反応やヒドリド還元、パラジウムを用いる触媒反応(鈴木・宮浦カップリング反応や右田・小杉・スティルカップリングなど)といった有機金属を用いた化学反応でしばしば用いられる。オリゴ糖や多糖の良溶媒でもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    C-Cケモカイン・レセプター5 (C-C chemokine receptor type 5) は、CCR5あるいは、CD195とも呼ばれる膜タンパク質である。ヒトでは、CCR5タンパク質をコードするCCR5遺伝子は、短腕(p)21領域に配置されている。この膜タンパク質は、白血球表面に存在し、ケモカインの受容体として機能することで免疫系に関与している。即ち、T細胞が特定の組織および器官をターゲットに引き付けられるプロセスに関係する。 ヒトにおいて、CCR5はHIV感染の機序に強く関与している。多くのHIV株が、宿主細胞に入り感染するための最初の段階でCCR5を利用している。。 CCR5の遺伝子にCCR5-Δ32として知られている変異を持つ集団がいる。この突然変異のホモ接合体のキャリアである人々は、CCR5 指向性(従来いわれるところの「マクロファージ指向性」)のHIV-1感染に耐性を持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トルエン(英: toluene)は、芳香族炭化水素に属する有機化合物で、ベンゼンの水素原子の1つをメチル基で置換した構造を持つ。無色透明の液体で、水には極めて難溶だが、アルコール類、油類などには極めて可溶なので、溶媒として広く用いられる。 常温で揮発性があり、引火性を有する。消防法による危険物(危険物#第4類第1石油類)に指定されており、指定数量の20 %以上の貯蔵には消防署への届出が必要である。人体に対しては麻酔作用がある他、毒性が強く、日本では毒物及び劇物取締法により劇物に指定されている。管理濃度は、20ppmである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホウ酸(ホウさん、硼酸、Boric acid)もしくはオルトホウ酸は化学式H3BO3またはB(OH)3で表わされるホウ素のオキソ酸である。温泉などに多く含まれ、殺菌剤、殺虫剤、医薬品(眼科領域)、難燃剤、原子力発電におけるウランの核分裂反応の制御、そして他の化合物の合成に使われる。常温常圧では無色の結晶または白色粉末で、水溶液では弱い酸性を示す。ホウ酸の鉱物は硼酸石(サッソライト)と呼ばれる。メタホウ酸や四ホウ酸などホウ素のオキソ酸を総称してホウ酸と呼ばれることもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イソブテン (isobutene) またはイソブチレン (isobuthylene) とは工業的に重要な炭化水素で、枝分かれ状に 4 個の炭素を持つアルケン。ブテンの構造異性体のひとつ。可燃性を持ち、常温常圧で無色の気体。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピリジン-N-オキシド (Pyridine-N-oxide) は、化学式 C5H5NOで表される複素環化合物であり、ピリジンの酸化によって得られる無色で吸湿性の固体である。この化合物は過酸を酸化剤として使用して製造される。分子の形は平面である。この化合物は有機合成において酸化剤として用いられることがある。また、錯体化学の分野で配位子として用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カコジル酸(Cacodylic acid)またはジメチルアルシン酸(Dimethylarsinic acid)は化学式 (CH3)2AsO2H で表される有機ヒ素化合物。両性である。カコジル酸塩は除草剤として多く用いられ、カコジル酸とカコジル酸ナトリウムの混合物はベトナム戦争において枯葉剤 (青)(Agent Blue)として使用された。カコジル酸ナトリウムは生体試料を電子顕微鏡のために調製、固定する際の緩衝液としてよく用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピロガロール (pyrogallol) は、ベンゼンの1,2,3位の水素がヒドロキシル基に置換した有機化合物で、3価フェノールである。別名、焦性没食子酸(しょうせいもっしょくしさん)。 没食子酸の脱炭酸で合成され、有機合成試薬、写真の現像液、毛織物の媒染剤、染料の成分として用いられる。 気体の精製に用いられる。ピロガロールの水溶液に通気させると、酸素を除去することができる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リトコール酸(リトコールさん、英: Lithocholic acid)は、脂質を可溶性にして吸収を高める界面活性剤の役割をする胆汁酸の一種である。結腸内において微生物の活動により一次胆汁酸であるケノデオキシコール酸から二次胆汁酸として生合成される。この反応は一部の腸内細菌が有する胆汁酸-7α-デヒドロキシラーゼによってリトコール酸が生成される。腸内細菌の総菌数の1〜10パーセント程度の多くの菌株が低い胆汁酸-7α-デヒドロキシラーゼ生産能を有することが確認されている。リトコール酸は、人や実験動物に発癌をもたらすとされている。食物繊維はリトコール酸を吸着し、大便として排出することを促進する。 さらには、ラットで各種ポリフェノール(カフェ酸、カテキン、クルクミン、エラグ酸)の摂取がリトコール酸の生成を減少させたとの報告がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リボフラビン (英: riboflavin) は、ビタミンB2 (英: vitamin B2) 、ラクトフラビン(英: lactoflavine)とも呼ばれ、ビタミンの中で水溶性ビタミンに分類される生理活性物質で、ヘテロ環状環に糖アルコールのリビトールが結合したものである。栄養素のひとつ。かつては成長因子 (英: growth factor) として知られていたことからビタミンGと呼ばれたこともある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    6-ホスホグルコン酸(6-Phosphogluconate)はペントースリン酸回路の中間体である。 6-ホスホグルコノラクトナーゼの作用によって作られ、ホスホグルコン酸デヒドロゲナーゼによってリブロース-5-リン酸に変換される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    RIG-I(リグ-アイ)(英:retinoic acid-inducible gene-I)はヒトの自然免疫系で働くタンパク質の分子。ウイルスが細胞内に進入した時にウイルス由来のRNAを認識し、抗ウイルス作用を示すI型インターフェロン産生の誘導を引き起こす、細胞質内に存在するRNAヘリカーゼである。京都大学の藤田尚志教授らによってその機能が明らかにされた。「リィグ・ワン」と誤って発音されることが多いが、正しくは「リィグ・アイ」である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オクトパミン(Octopamine, β,4-dihydroxyphenethylamine)とは、アドレナリンと密接に関連した内因性の生体アミンであり、アドレナリン作動性システムとドーパミン作動性システムに影響を与える。これはまた、ビターオレンジを含む多くの植物で見つかっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アモジアキン(amodiaquine, ADQ)はマラリアの治療に用いられる医薬品であり、マラリア原虫による合併症のないマラリアの治療に用いられる。耐性のリスクを軽減させる為にアーテスネートとの併用が勧められる。稀であるが重度の副作用があるためマラリアの予防薬としては勧められない。 アモジアキンの副作用はクロロキンに似ており、一般的に軽度から中等度の副作用がある。稀に肝臓の支障または無顆粒球症を発生することがある。過度の服用により、頭痛、不眠症、発作、心停止、などが起こりえる。2007年時点では詳細な研究はされていないが、妊娠中の服用は安全とされる。 アモジアキンはクロロキンと同系の4-アミノキノリン化合物である。 アモジアキンが最初に作られたのは1948年である。世界保健機関の必須医薬品リストに掲載されており、最も効果的で安全な医療制度に必要とされる医薬品である。2014年の卸売価格は1投与約$0.01米ドルである。米国では入手できない。アフリカでは幅広く使用されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセトニトリル (acetonitrile) は有機溶媒の一種で、最も単純なニトリルである。IUPAC系統名としてエタンニトリル (ethanenitrile)、シアン化メチル (methyl cyanide) シアノメタン (cyanomethane) と表記できる。消防法に定める第4類危険物 第1石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    マトリックスメタロプロテイナーゼ-3(英: matrix metalloproteinase-3、略称: MMP-3)もしくはストロメリシン-1(ストロメライシン-1、英: stromelysin-1)は、ヒトではMMP3遺伝子にコードされる酵素である。MMP3遺伝子は染色体11q22.3に局在するMMP遺伝子クラスターの一部を構成している。MMP-3は推定54 kDaのタンパク質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    パロキセチン塩酸塩水和物(パロキセチンえんさんえんすいわぶつ、英語: Paroxetine Hydrochloride Hydrate)は、イギリスのグラクソ・スミスクライン(旧 スミスクライン・ビーチャム)で開発された選択的セロトニン再取り込み阻害薬(SSRI)である。同社より商品名パキシル(Paxil)で発売されている。日本では2000年11月に薬価収載され、販売が開始された。 パロキセチンは、脳内セロトニン神経系でセロトニンの再取り込みを阻害することで、脳内シナプス間隙に存在するセロトニン濃度が高まり、神経伝達能力が上がる。その結果、抗うつ作用及び抗不安作用を示すと考えられる。 また、ヒトP2X4受容体の強力な阻害作用(IC50=1.87µM)を有する。抗アロディニア作用を示し、神経因性疼痛の患者へ使用することが可能とみられる。 児童青年のうつ病への効果は確認できず、また安全性も確認できず有害事象が報告されており、英国国立医療技術評価機構(NICE)は児童青年には処方してはならないとしている。グラクソ・スミスクラインは児童青年に対し、有害事象の証拠がありながら安全で効果的だとして、違法な病気喧伝を行なったため、アメリカ合衆国司法省より30億ドルの訴訟を行われたという歴史がある。 パロキセチンは他のSSRIと比較して有害事象発生率が高い(higher incidence)、かつ薬物相互作用の傾向が高い(higher propensity for drug interactions)とNICEは報告している。パロキセチンの断薬は、危険性の高い中断症候群を引き起こすことがある。 軽症のうつ病を説明する「心の風邪」というキャッチコピーは、1999年に明治製菓が同社のSSRIであるデプロメールのために最初に用い、特にパキシルを販売するため、グラクソ・スミスクラインによる強力な病気喧伝で使用された。現在では、軽症のうつ病に対する抗うつ薬の効果には疑問が呈されており、安易な薬物療法は避けるよう推奨されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    17-ジメチルアミノエチルアミノ-17-デメトキシゲルダナマイシン(17-dimethylaminoethylamino-17-demethoxygeldanamycin, 17-DMAG)は、抗生物質のの半合成誘導体である。癌治療への発展性が研究されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    酢酸エチル(さくさんエチル、ethyl acetate)とは、有機化合物で、酢酸とエタノールが脱水縮合したエステル。引火点 −4 ℃の、パイナップルに似た果実臭のする無色で揮発性の液体で、有機溶媒として用いられる。 極性が高く、最大で 3% 重量ほど酢酸エチルに水が溶解する。逆に水に対しては 10体積%(25℃)ほど溶解し温度が低いほど増大する。また、エタノール、エーテル、ベンゼン、ヘキサンなどのほとんどの有機溶媒と任意の割合で混ざり合う。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    C反応性蛋白(シーはんのうせいたんぱく、英: C-reactive protein、CRPと略称される)は、環状の5量体タンパク質であり、体内で炎症反応や組織の破壊が起きているときに血中に現れる。急性期反応タンパクの一つ。肺炎球菌のC多糖体と結合するためこの名がある。CRPはマクロファージとT細胞からのIL-6の分泌により、肝臓と脂肪細胞から分泌される。CRPは、死細胞や細菌表面のリゾフォスファチジルコリンに結合し、C1qを介して補体の古典的経路を活性化し、細菌の溶菌・凝集に関与する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ラロキシフェン(Raloxifene)は、選択的エストロゲン受容体修飾薬(SERM)であり、骨でエストロゲン作用を、子宮および乳房で抗エストロゲン作用を示す。閉経後の女性の骨粗鬆症予防に用いられる。商品名エビスタ。 日本では「閉経後骨粗鬆症」に対して2004年1月29日に承認された。 2006年、米国NCIは、ラロキシフェンは閉経後女性の乳癌リスクをタモキシフェン同様に減少させると発表した。タモキシフェンの主な副作用は子宮癌であるが、ラロキシフェンが子宮癌を惹起する可能性はタモキシフェンより低い。またタモキシフェンは白内障リスクを上昇させるが、ラロキシフェンは上昇させない。何方も静脈および肺において血栓生成を助長するが、ラロキシフェンの副作用発現率はタモキシフェンより少ない。2007年9月、米国FDAは骨粗鬆症のある閉経後女性の侵襲性乳癌のリスク減少ならびに閉経後女性で侵襲性乳癌リスクの高い患者の同リスク減少についてラロキシフェンの適応を承認した。Lancet Oncology 誌はラロキシフェンの発売についての情報提供に方法を批判する社説を発表した。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トルセトラピブ(Torcetrapib)は主にHDLコレステロールを上昇させることで脂質異常症を治療し冠動脈疾患を予防することを目的として、かつて開発されていた化合物である。ファイザーにより、単剤またはアトルバスタチンとの合剤として臨床試験が進められていたが、第III相臨床試験の中間解析で治験薬群で全死亡・心血管障害が増加したために2006年12月に開発が中止された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チアリシン(Thialysine)は、アミノ酸であるリシンの毒性アナログで、アミノ酸の側鎖の2番炭素原子が硫黄原子に置換した構造を持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミコフェノール酸(ミコフェノールさん、Mycophenolic acid、MPA )は、臓器移植後の拒絶反応の予防またはクローン病や狼瘡などの自己免疫疾患の治療に用いられる免疫抑制薬である。具体的には、腎臓、心臓、肝臓の移植後に使用される。投与法は経口または静脈への注射である。製剤されたものにはミコフェノール酸ナトリウムとミコフェノール酸モフェチルがある。日本ではモフェチルエステルのみが承認されている。 一般的な副作用には、吐き気、感染症、下痢、などがあげられる。その他の重度の副作用には、癌リスクの増加、進行性多巣性白質脳症、貧血、胃腸出血、などがあげられる。妊娠中の人への使用は胎児に害を及ぼす可能性がある。作用機序はリンパ球がグアノシンを生成するのに必要とするイノシン一リン酸デヒドロゲナーゼ(IMPDH)を阻害することによって機能する。 ミコフェノール酸は、1893年にイタリア人のによって最初に発見された。1945年と1968年に再発見された。1990年代に免疫抑制作用が発見された後、1995年に米国で医薬品として承認された。後発医薬品として入手できる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シタグリプチンリン酸塩水和物(シタグリプチンリンさんえんすいわぶつ、Sitagliptin Phosphate Hydrate)は、DPP-4 (Dipepeptidyl peptidase-4) 阻害薬に分類される経口血糖降下薬である。DPP-4はインクレチンの分解に関係する酵素であり、これを阻害することで、高血糖時のインスリン分泌を高めて血糖値を低下させるので、2型糖尿病の治療薬として利用されている。GLP-1アナログ製剤であるリラグルチドと同じくインクレチン関連薬の1つであり、SU剤に代表される経口血糖降下薬に比べて低血糖のリスクが少ないとされる。上気道感染症・尿路感染症の副作用が3%に見られたが、膵疲弊の軽減の結果かHOMA-βやプロインスリン/インスリン比を改善した。頻度の高い副作用としては低血糖・下痢などが知られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エチルメチルエーテル (ethyl methyl ether) は、メトキシエタンともいい、ジメチルエーテルの次に単純な構造をしたエーテルである。プロパノールの構造異性体にあたる。沸点が 10.8 ℃ と低く、常温では容易に気化する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    モメタゾン(英: mometasone)またはモメタゾンフランカルボン酸エステル(英: mometasone furoate)とは、皮膚病、花粉症、および喘息の治療に用いられるステロイド系抗炎症薬の1種である。特に、喘息発作の予防のために吸入して、気道の炎症を抑えるために使用されるものの、喘息発作が発生した場合は別な薬剤で治療する。また、皮膚に塗布して用いることや、点鼻で用いることもできる。 一般的な副作用は、喘息のために吸入で使用した際は、頭痛、のどの痛み、および、気道のカンジダ症がある。点鼻で使用する場合は、上気道感染症と鼻出血がある。皮膚に塗布する場合は、にきび、皮膚萎縮、およびかゆみなどが挙げられる。モメタゾンは炎症を抑えることにより薬効を示す。 モメタゾンフランカルボン酸エステルは1981年に特許を取得し、1987年に医療用に市販された。ジェネリック医薬品も入手可能である。イギリスで吸入器(インヘラー)を使うと1か月で NHS費用が約30ポンド(約3000円)かかるが、2019年の時点で点鼻スプレーは2ポンド(約300円)未満である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アピゲニン(Apigenin)は、多くの植物に含まれるフラボンであり、天然に生成する多くの配糖体のアグリコンである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    セピアプテリンレダクターゼ(sepiapterin reductase, SPR)は、次の化学反応を触媒する酸化還元酵素である。 7,8-ジヒドロビオプテリン + NADP+ セピアプテリン + NADPH + H+ 反応式の通り、この酵素の基質は7,8-ジヒドロビオプテリンとNADP+、生成物はセピアプテリンとNADPHとH+である。 組織名は7,8-dihydrobiopterin:NADP+ oxidoreductaseである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホルムアミド(Formamide)はギ酸から誘導されるアミドである。水と任意の割合で混ざり合う透明な液体で、アンモニア臭がする。サルファ薬の製造やビタミンの合成に使われ、紙や繊維の柔軟剤としても使われる。水に不溶の様々なイオン性化合物を溶かし、溶媒として用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ICAM-1または細胞間接着分子1(さいぼうかんせっちゃくぶんし1、英: intercellular adhesion molecule 1)は、ヒトではICAM1遺伝子にコードされるタンパク質である。CD54(cluster of differentiation 54)としても知られる。ICAM-1は細胞表面の糖タンパク質であり、一般的には血管内皮細胞と免疫系の細胞で発現している。/、/CD18型のインテグリンに結合し、またライノウイルスがに進入する際の受容体としても利用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1-ナフトール(en:1-Naphthol)は示性式C10H7OHを有する蛍光性有機化合物である。ナフタレンの水素を1個、ヒドロキシ基に置換した化合物で、フェノール類に分類される芳香族化合物である。また、そのヒドロキシ基はフェノールよりも反応性が高い。ヒドロキシ基の置換位置が異なる異性体、2-ナフトールが存在する。化学工業ではα-ナフトールと呼ばれている。異性体はいずれも単純なアルコール、エーテル、クロロホルムに溶けやすい。これらは、さまざまな有用な化合物の前駆体である。ナフトール類(1-および2-の両方の異性体)は、多環芳香族炭化水素にさらされた家畜およびヒトのバイオマーカーとして使用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ナリンゲニン(Naringenin)は、化学式C15H12O5で表されるフラバノンの1種である。ナリルチンやナリンギンやのアグリコンとして知られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    テネリグリプチン(Teneligliptin)は、DPP-4 (Dipepeptidyl peptidase-4) 阻害薬に分類される経口血糖降下薬である。DPP-4はインクレチンの分解に関係する酵素であり、これを阻害することで血糖値依存性にインスリン濃度を高め、血糖値を低下させると考えられている。GLP-1アナログ製剤と同じくインクレチン関連薬の1つであり、SU剤に代表される経口血糖降下薬に比べて低血糖のリスクが少ないとされる。 日本国内では田辺三菱製薬から発売されている。商品名 テネリア。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プルプロガリン (purpurogallin) は、赤色の結晶性の化合物で、虫こぶやオーク皮に由来するいくつかの配糖体のアグリコンである。カテコール-O-メチルトランスフェラーゼによるヒドロキシエストラジオールのメチル化を阻害しうる。また、/の活性化経路を強く阻害する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シメン (cymene) またはp-シメン、パラシメン (p-cymene) とは、天然に存在するモノテルペンのひとつで、構造は芳香族炭化水素に分類される。ベンゼン環のパラ位(1位と4位)にメチル基 (-CH3) とイソプロピル基 (-CH(CH3)2) が置換した構造を持つ。水にはほとんど溶けず、エタノールやエーテルには易溶である。 天然にはクミンやタイムなどの精油に含まれる。工業的には、ピネンの脱水素化や、トルエンとプロペンのフリーデル・クラフツ反応などによって製造される。石鹸などに香料として添加されるほか、テレフタル酸やチモールの合成原料としても利用される。 位置異性体として o-シメン(CAS登録番号 [527-84-4])と m-シメン(同 [535-77-3])が知られるが、どちらも天然での存在は知られていない。p-シメンのみが天然化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ゲンチジン酸(ゲンチジンさん、gentisic acid)または2,5-ジヒドロキシ安息香酸(2,5-dihydroxybenzoic acid、DHB)は、ジヒドロキシ安息香酸の1つである。安息香酸やサリチル酸の誘導体で、アセチルサリチル酸(アスピリン)の肝臓での代謝による分解生成物(1%程度)として腎臓から排出される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トピラマート (英:Topiramate:略記TPM) は、抗てんかん薬のひとつ。日本では2007年よりトピナの商品名で販売され、適応は他のてんかん薬で十分な効果がない部分発作に対する補助薬である。 CYP3A4によって主に代謝される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イブジラスト(Ibudilast)は、主に日本で使用されている抗炎症薬である。ホスホジエステラーゼ阻害薬として、PDE4サブタイプを最もよく阻害し、他のPDEサブタイプに対しても有意な阻害効果を示す。開発コード:AV-411またはMN-166。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ステロイド-21-モノオキシゲナーゼ(steroid 21-monooxygenase)は、ステロイドホルモン生合成酵素の一つで、次の化学反応を触媒する酸化還元酵素である。 ステロイド + 還元型受容体 + O2 21-ヒドロキシステロイド + 受容体 + H2O この酵素の基質はステロイド、還元型受容体とO2で、生成物は、受容体とH2Oである。補因子としてヘムとフラビンを用いる。 この酵素は酸化還元酵素に属し、基質に特異的に作用する。酸素は酸化剤として還元されると同時に基質に取り込まれる。組織名はsteroid,hydrogen-donor:oxygen oxidoreductase (21-hydroxylating)で、別名にsteroid 21-hydroxylase、21-hydroxylaseがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コール酸(コールさん, cholic acid)は化学式 C24H40O5、分子量408.579のステロイドで代表的な胆汁酸である。一次胆汁酸の一種で、アミノ酸とのアミドを作り、それらは多くの生物で見つかっている。水にはほんの少しだけ溶ける。消化液(胆汁)の成分として、脂質の消化吸収を助ける役割を持っている。CAS登録番号は [81-25-4]。 コール酸はコレステロールの代謝によって肝臓で作られ、胆嚢に送られ、十二指腸に分泌されて、その一部が微生物によって代謝され、デオキシコール酸等の二次胆汁酸となる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イサチン(Isatin)または1H-インドール-2,3-ジオン(1H-indole-2,3-dione)は、多くの植物で見られるインドール誘導体の一つ。1841年にErdmanとLaurentによって硝酸とクロム酸によるインディゴの酸化によって初めて合成された。 イサチンのシッフ塩基はその薬学特性が研究されている。 イサチンに硫酸と未精製のベンゼンを混ぜると青色の染料ができることが観察される。これはベンゼンとの反応で青色のインドフェニンが形成すると長く考えられていたが、ヴィクトル・マイヤーはこの未精製のベンゼンからインドフェニンの形成反応の正体であるチオフェンを初めて単離した。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カプサイシン (capsaicin) はアルカロイドのうちと呼ばれる化合物のひとつ。部分構造にバニリン由来のバニリル基を持つために、バニロイド類にも属す。唐辛子の辛味をもたらす主成分で、辛味の指標であるスコヴィル値における基準物質。化合物名はトウガラシ属の学名Capsicum に因む。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジアゾメタン (diazomethane) とは、最も単純な構造のジアゾ化合物で、爆発性がある非常に有毒な黄色気体である。化学式 CH2N2 で、分子量 42.02。融点 −145 ℃、沸点 −23 ℃であり、常温では黄色無臭気の気体。CAS登録番号は [334-88-3]。1894年に、によって発見された。 ジアゾメタン自体は衝撃、熱、光、アルカリ金属の存在により爆発する場合がある。エーテル溶液は比較的安定。水、アルコールが存在すると徐々に反応し分解する。実験室における有機合成で汎用されるO-メチル化剤の一つである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グリコール酸(グリコールさん、英: glycolic acid)または ヒドロキシ酢酸 (hydroxyacetic acid) は、α-ヒドロキシ酸 (AHA) の一種である。砂糖に関する作物サトウキビ、テンサイ、パイナップルなどに天然に含まれる。有機化学の材料、溶媒、塗料、染料、香料、防腐剤、また外用してスキンケアに使われる。日本の法律で濃度が3.6%を超えるものは劇物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ビマトプロスト(Bimatoprost)は、緑内障の進行制御やの管理のために(点眼薬として)局所的に使用されるプロスタグランジン構造類似体/プロドラッグである。 アメリカ合衆国、カナダ、欧州ではアラガンによってLumigan(ルミガン)の商品名で販売されている。日本では千寿製薬が製造販売している。ビマトプロストは眼からの房水の流出量を増加させることによって眼内圧(IOP)を低下させる。 2008年、睫毛を伸ばす適応でアメリカ食品医薬品局 (FDA) によって承認された。化粧品としてのビマトプロストの処方はLatisse(ラティース)として販売されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホスホリボシル二リン酸(ホスホリボシルにりんさん、Phosphoribosyl diphosphate)はの一つ。リボース-5-リン酸からリボースリン酸ジホスホキナーゼによって作られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プレグネノロン (pregnenolone) は、プロゲステロン、コルチコイド、アンドロゲン、およびエストロゲンのステロイド生成にかかわるプロホルモンである。プレグネノロンは体内であらゆるホルモンに変換されるプロホルモンである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    Cav1.1は別名、電位依存性L型カルシウムチャネルαサブユニット(CACNA1S)と呼ばれ、CACNA1S遺伝子にエンコードされているヒトのタンパク質である。 CACNL1A3およびジヒドロピリジン受容体 (DHPR)の名でも知られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2-ピロリドン(または2-ピロリジノン、γ-ブチロラクタム)は、5員環ラクタム構造を持つ有機化合物。水、エタノール、酢酸エチル、ジエチルエーテル、クロロホルム、二硫化炭素、ベンゼンなど多くの溶媒と互いに混合し、工業用溶媒として用いられる。またポリビニルピロリドンなど高分子化合物の中間体として用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジクロロ酢酸(ジクロロさくさん、dichloroacetic acid、略号DCA)は示性式で示される化学物質である。酸として、あるいは酢酸のメチル基の水素を塩素で置換したアナログとして知られている。ジクロロ酢酸の塩もしくはエステルは英語ではdichloroacetatesと表記される。DCA塩は酵素であるの阻害剤として利用される。毒物及び劇物取締法により劇物に指定されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    過酸化水素(かさんかすいそ、英: hydrogen peroxide)は、化学式 H2O2 で表される化合物。しばしば過水(かすい)と略称される。主に水溶液で扱われる。対象により強力な酸化剤にも還元剤にもなり、殺菌剤、漂白剤として利用される。発見者はフランスのルイ・テナール。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フシジン酸 (フシジンさん、fusidic acid) は、クリームおよび点眼剤の形で局所的に使用されることが多い抗生物質であるが、錠剤または注射剤の形で全身投与することも可能である。近年、抗菌剤耐性の獲得が国際的に問題となる中、その使用に新たな関心が向けられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チアベンダゾール(英称:thiabendazole、略称TBZ)は、防カビ剤の1種である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジメチルエーテル (英: dimethyl ether, 略: DME) は、エーテルの一種で最も単純なもの。 スプレー噴射剤、燃料として使われる。 灯油に近い燃焼特性と液化石油ガス (LPG) に近い物性を持つため、近年の原油価格高騰の中、中国などを中心として、LPG代替の民生用都市ガス原料(プロパンに20%配合)や自動車用・産業用燃料の実用化が進んでいる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリアムテレン(Triamterene)とはカリウム保持性利尿薬の一つである。高血圧や浮腫の治療にループ利尿薬やチアジド系利尿薬と併用される。経口投与で急速に吸収され、血清蛋白と50%程度結合する。腎臓では糸球体濾過と近位尿細管からの分泌により排泄される。腎上皮に存在するNa+チャネルを阻害することによりK+保持性に利尿作用を示す。商品名トリテレン。海外ではヒドロクロロチアジドとの合剤がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    セバシン酸(セバシンさん、sebacic acid)は有機化合物の一種で、直鎖ジカルボン酸である。セバシン酸の名称は、ラテン語の sebum (獣脂)や Sebaceus(獣脂製のろうそく)に由来する。 純粋なセバシン酸は、フレーク状または粉末状の白色固体である。ヘキサメチレンジアミンと共に6,10-ナイロンの原料となる。 アゼライン酸などと同様に、プラスチックの可塑剤(エステルのセバシン酸ジオクチルなど)、潤滑剤、、化粧品、ろうそくの原料となり、最近ではウレタンの原料として使用されることもある。また、芳香剤、防腐剤、塗料にも用いられる。 セバシン酸の主原料はトウゴマの種子から得られる植物油であるひまし油であり、環境にやさしい製品として取り上げられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ゲラニル二リン酸(geranyl diphosphate, GPP)は、炭素数10の直鎖イソプレノイド。2つのイソプレン単位からなる。同じく直鎖状のイソプレノイドであるファルネシル二リン酸やゲラニルゲラニル二リン酸、またそこから誘導されるすべてのテルペノイド(コレステロールなど)の生合成経路における中間体である。また、モノテルペノイドの前駆物質でもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イマチニブ(imatinib)は、フィラデルフィア染色体の遺伝子産物Bcr-Ablを標的とした分子標的治療薬としてブライアン・ドラッカーとスイスのノバルティスファーマ社により開発された抗悪性腫瘍剤(抗がん剤)。 イマチニブ製剤は、慢性骨髄性白血病 (CML)、フィラデルフィア染色体陽性急性リンパ性白血病 (Ph+ALL) 、KIT (CD117) 陽性消化管間質腫瘍 (GIST) に対する治療薬として用いられる。投与はメシル酸塩で行われる。先発品の商品名は「グリベック(Glivec、米国でのみGleevec)」。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シピオン酸(シピオンさん、英: Cypionic acid)は、化学式C8H14O2で表されるカルボン酸の一種。 主な用途は医薬品製剤で、母体化合物の半減期を長くするため、シピオン酸エステルとしたものがプロドラッグとして製造される。シピオン基は脂溶性であるため、筋肉注射されると脂肪組織に取り込まれる。シピオン基は代謝酵素により徐々に加水分解され、安定した量の有効成分を放出する。この効果を応用する医薬品の例として、テストステロン、ヒドロコルチゾン、オキサボロン、エストラジオールなどがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デスオキシコルチコステロン(Desoxycorticosterone、11-デオキシコルチコステロン)は、副腎の網状帯と束状帯から分泌される鉱質コルチコイドである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミリセチン (myricetin) は、多くのブドウ、ベリー、果物、野菜、ハーブ、その他の植物に含まれているフラボノイドである天然フラボノールの一種である。食品の中ではクルミの豊富に含まれている。配糖体の形でも微量に含まれている。ミリセチンは赤の一つである。 ミリセチンは抗酸化活性を有する。In vitroの研究では、高濃度のミリセチンが白血球によるの取り込みを増加させることが示唆されている。フィンランドの研究では、高ミリセチン摂取と前立腺癌の発生率の低下に相関があることが示されている。 8年間のコホート研究では、3種のフラボノール(ケンペロール、クェルセチン、ミリセチン)が膵臓癌のリスクを23%低減するということが示されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エチニルエストラジオール(Ethinylestradiol、EE)はエストロゲン薬で、プロゲスチンと組み合わせて避妊薬として広く使用されている。過去には、更年期障害、婦人科疾患、など、様々な適応症で広く使用されていた。通常は経口で服用する。パッチや膣内リングとしても使用される。 EEの一般的な副作用には、乳房の圧痛や、頭痛、、嘔気などがある。男性の場合、EEは更に乳房の発達、女性化、、性機能障害を引き起こす可能性がある。稀ではあるが重篤な副作用として、血栓、肝障害、子宮体癌などがある。 EEは、エストロゲン(エストラジオール等)の生物学的標的であるエストロゲン受容体の作動薬である。EEは、天然のエストロゲンであるエストラジオールの合成誘導体であり、エストラジオールとは様々な点で異なる。EEはエストラジオールと比較して、経口投与時の生物学的利用能が大幅に向上しており、代謝され難く、肝臓や子宮など特定の部位での効果が比較的高くなっている。これらの違いにより、EEはエストラジオールよりも避妊薬への使用に適しているが、血栓やその他の稀な副作用のリスクが高くなることもある。 EEは1930年代に開発され、1943年に医療用として導入された。1960年代には避妊薬に使用されるようになった。今日、EEは殆ど全ての型避妊薬に含まれており、この目的の為に使用されるほぼ唯一のエストロゲンであり、最も広く使用されているエストロゲンの1つとなっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ベンゼンスルホン酸(ベンゼンスルホンさん、benzenesulfonic acid)は、ベンゼンの水素が1個スルホ基(-SO3H) に置き換わった構造 (C6H5SO3H)を持つ、有機スルホン酸の一種である。ベシル酸と別称される。水に可溶な強酸である。 ベンゼンを、発煙硫酸、あるいは濃硫酸でスルホン化して合成する。 温水溶液中、ベンゼンスルホン酸を水酸化ナトリウムで中和し、その後冷却すると、プロトンがナトリウムイオンに置き換わったの結晶が析出する。 このナトリウム塩、あるいはベンゼンスルホン酸を直接アルカリ融解すると、芳香族求核置換反応が起こる結果、ナトリウムフェノキシドが得られる。これを酸で中和するとフェノールとなる。 ほか、ベンゼンスルホン酸に五酸化二リンを作用させれば (C6H5SO2OSO2C6H5)が、ナトリウム塩に五塩化リンを作用させれば塩化ベンゼンスルホニル (C6H5SO2Cl) が、それぞれ得られる。 ベンゼンスルホン酸は、p-トルエンスルホン酸と同様、酸触媒として用いることが可能ではあるが、若干高価であることと、有機溶媒への溶解性に劣ることから、p-トルエンスルホン酸ほどは用いられない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メトロニダゾール(英: metronidazole)は系の抗原虫薬、抗菌薬のひとつ。日本では商品名フラジールなどで知られる。 当初はトリコモナス感染症治療薬であったが、様々な微生物への殺作用が確認され、適応は広がった。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イソバレリルCoA(isovaleryl-CoA)は、分枝アミノ酸のロイシンの代謝中間体の一つである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    Bcl-2(B-cell/CLL lymphoma 2)はヒトではBCL2遺伝子にコードされるタンパク質で、細胞死(アポトーシス)の阻害または誘導のいずれかを行うBcl-2ファミリーの最初に発見されたメンバーである。 Bcl-2の名称はB-cell/CLL lymphoma 2に由来し、濾胞性リンパ腫における14番染色体と18番染色体間の染色体転座に関与するタンパク質として2番目に記載されたメンバーであることを意味している。BCL2のオルソログ(マウスのBcl2など)は、全ゲノムデータが利用可能な哺乳類の多数で同定されている。 、BCL5、BCL6、、BCL9、BCL10と同様、リンパ腫において臨床的に重要である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミダゾラム(英: Midazolam)はベンゾジアゼピン (BZP) 系の麻酔導入薬・鎮静薬の一つである。日本での商品名はドルミカム(丸石製薬製造販売。アステラス製薬より販売移管)およびミダフレッサ静注0.1%(製造販売)ブコラム口腔用液10mg(武田薬品工業製造販売)。静脈内注射後、通常10秒から2分以内に効果が発現し、1 - 6時間継続する。を誘発する。 WHO必須医薬品モデル・リストに収載されている。連用により依存症、急激な量の減少により離脱症状を生じることがある。向精神薬に関する条約のスケジュールIVに指定されている。麻薬及び向精神薬取締法の第三種向精神薬である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プトレシン (putrescine, putrescin, putrescene) はアミンの一種で、腐肉の臭いの成分である。 カダベリンに類似した性質を持つ。これらは共に、生きている、または死んだ生物中に存在するアミノ酸が分解することによって生成する。 健常な細胞中でもオルニチン脱炭酸酵素によって少量合成されている。プトレシンは最も単純なポリアミンの1つであり、ポリアミンは細胞分裂に必須な増殖因子であるとされている。 他に腐臭を持つ化合物としてメタンチオールや酪酸がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インターロイキン-22(英: interleukin-22、略称: IL-22)は、ヒトではIL22遺伝子にコードされるタンパク質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    バンデタニブ(Vandetanib)は甲状腺癌の治療に用いられる化学療法剤の一つである。多くの細胞受容体、特に血管内皮細胞増殖因子受容体(VEGFR)、上皮成長因子受容体(EGFR)、RETチロシンキナーゼをする。商品名カプレルサ。開発コードZD6474。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フィブロネクチン(Fibronectin、略称: FN、Fn、fn、FN1)は、巨大な糖タンパク質で、細胞接着分子である。ヒト由来や哺乳動物由来のフィブロネクチンがよく研究されている。以下は、主にヒト由来フィブロネクチンの知見である。単量体は2,146-2,325アミノ酸残基からなり、分子量は210-250kDaである。 細胞接着分子として、in vitroで、細胞の接着、成長、、分化を促進することから、in vivoで、細胞の細胞外マトリックスへの接着、結合組織の形成・保持、創傷治癒、胚発生での組織や器官の形態・区画の形成・維持など、脊椎動物の正常な生命機能を支える多くの機能があると考えられている。フィブロネクチンの発現異常、分解、器質化は、ガンや線維化(線維症)をはじめとする多くの疾患の病理に関連している。 フィブロネクチンは、細胞膜上の受容体タンパク質であるインテグリンと結合する。また、コラーゲン、フィブリン、ヘパラン硫酸プロテオグリカン(たとえばシンデカン)などと結合し、細胞外マトリックスを形成する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    セレブロシドスルファターゼ(Cerebroside-sulfatase)またはアリールスルファターゼA(Arylsulfatase A)は、をセレブロシドと硫酸に分解する酵素である。ヒトでは、アリールスルファターゼAはARSA遺伝子でコードされている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アミロイド前駆体タンパク質(アミロイドぜんくたいタンパクしつ、英: amyloid precursor protein、略称: APP)またはアミロイドβ前駆体タンパク質は、多くの組織で発現している内在性膜タンパク質で、神経細胞のシナプスに濃縮されている。主要な機能は未知であるが、シナプス形成、、抗菌活性、鉄排出の調節因子であると示唆されている。APPは、タンパク質分解によって形成されるアミロイドβ(Aβ)の前駆体として最もよく知られている。Aβは37–49アミノ酸残基からなるポリペプチドで、アミロイド型のAβはアルツハイマー病患者の脳に存在するアミロイド斑の主要な構成要素である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トレチノイン(英語: Tretinoin)は、ビタミンA誘導体の一種であり、二重結合がすべてトランス型をとったレチノイン酸(オール・トランス異性体)である。別名オールトランスレチノイン酸 (ATRA)。の治療薬としての内服薬ベサノイド。トレチノインの外用薬は、日本国外で尋常性痤瘡(ニキビ)や光老化に承認された医薬品である。 外用薬では塗布部位の痒み、紅斑、熱感、皮むけが起こりやすく、第三世代の合成レチノイドであるアダパレン(商品名ディフェリン)では受容体への選択性によって、使用中止につながりやすいこの副作用を改良している。日本ではトコフェロールと結合した医薬品成分トレチノイントコフェリル(オルセノン軟膏)は、褥瘡、皮膚潰瘍に適応を持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    3'-ホスホアデノシン-5'-ホスホ硫酸(3'-Phosphoadenosine-5'-phosphosulfate)は、アデノシンの3'と5'の位置がリン酸化し、さらに5'のリン酸に硫酸が付加した化合物である。の酵素反応で作用する補酵素である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ブフェキサマク(bufexamac)は、非ステロイド性抗炎症薬(NSAIDs)の一つである。非ステロイド性の外用剤(塗り薬)の主な成分として湿疹や皮膚炎の治療に用いられていたが、皮膚炎の副作用から日本では2010年に販売中止。抗炎症作用はステロイド系抗炎症薬ほど強くなく、主に比較的軽い湿疹や帯状疱疹などに使われた。日本ではアンダームの商品名で軟膏やクリームが帝國製薬から発売されていたほか、後発品も販売されていた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒスタミン-N-メチルトランスフェラーゼ(histamine N-methyltransferase, HMT, HNMT)は、ヒスタミンの代謝に関与する2種の酵素のうちの1つである。もう一方はジアミンオキシダーゼである。ヒスタミン-N-メチルトランスフェラーゼは、S-アデノシルメチオニン(SAM)を用いてヒスタミンをにメチル化する。ほとんどの体組織に存在するが流動性は持たない。この酵素はに位置する単一遺伝子によってエンコードされている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チロシンヒドロキシラーゼ(Tyrosine hydroxylase、EC 1.14.16.2)、チロシン 3-モノオキシゲナーゼ(tyrosine 3-monooxygenase)は、チロシンをジヒドロキシフェニルアラニン(DOPA)に変換する酵素である。DOPAはノルアドレナリンとアドレナリンの前駆体であるドーパミンの前駆体である。 この酸素添加酵素はカテコールアミンを含むすべての細胞の細胞質基質で見られる。この最初の反応はカテコールアミン合成において律速段階である。 この酵素は特殊で、インドール誘導体は受け入れない。カテコールアミンの合成に関わる他の多くの酵素も同様である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    APAF1(apoptotic peptidase activating factor 1)はアポトーシスに関与するタンパク質で、線虫Caenorhabditis elegansのCED-4のヒトホモログである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジドブジン(zidovudine, ZDV)は、核酸系逆転写酵素阻害薬(NRTI)の一種である。HIV の治療薬として用いられる。別名は アジドチミジン(azidothymidine, AZT)。商品名はレトロビル(Retrovir)。同じNRTIのラミブジンとの合剤はコンビビル(Combivir)。 バローズ・ウェルカム(現グラクソ・スミスクライン)社が1964年に抗がん剤として初合成し、1985年にNCIに所属していた満屋裕明が抗HIV作用を発見した。バローズ・ウエルカム社が製品化を進め、世界初の抗HIV薬として1987年3月に国際誕生となり、日本では1987年11月に発売開始した。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カナリン(Canaline)は、タンパク質を構成しないアミノ酸の1つで、IUPAC名は、2-アミノ-4-(アミノオキシ)酪酸(2-amino-4-(aminooxy)butyric acid)である。カナバニンを含む豆果に含まれ、カナバニンからアルギナーゼの作用により作られる。最も一般的な抽出源は、タチナタマメである。 L-カナリンは、側鎖にO-アルキルヒドロキシルアミン基を含む唯一の天然アミノ酸である。構造的にオルニチン(5-オキサ誘導体)と関連しており、強力な殺虫剤である。2.5 mMのカナリンを含む餌を食べたタバコスズメガの幼虫は、大規模な発生異常を起こし、ほとんどの幼虫は蛹の段階で死んだ。蛾に対する神経毒の効果も持つ。 その毒性は主に、容易にケト酸やアルデヒド、特に多くのビタミンB6依存性酵素の補因子であるピリドキサールリン酸と、オキシムを形成することによるものである。10 nMという低濃度でを阻害する。 L-カナリンはオルニチンアミノトランスフェラーゼの基質となり、L-(L-シトルリンのアナログ)が形成される。後者は、の作用により、L-となる。L-カナバニノコハク酸はアルギニノコハク酸シンターゼにより切断されて、L-カナバニンとなる。この一連の反応により、カナリン-尿素回路(オルニチン-尿素回路のアナログ)が形成される。カナバニン分子がカナリン-尿素回路を通過するたびに末端の2つの窒素原子が尿素として放出される。尿素は、ウレアーゼにより、窒素代謝の仲介を支えるアンモニアを形成するため、この一連の反応の重要な副産物となる。L-カナリンは還元的に切断されて、必須アミノ酸の合成に必要なL-ホモセリンとなる。この過程で、カナバニンの3番目の窒素原子は、植物の窒素代謝反応の中に入る。ホモセリンとして、その炭素骨格も重要な用途を持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    塩化白金(II)(えんかはっきん に、platinum(II) chloride)は、化学式が PtCl2 で表される2価の白金の塩化物である。他の白金化合物の合成の出発物質として非常に重要な物質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メチル水銀(メチルすいぎん、英: Methylmercury)とは、水銀がメチル化された有機水銀化合物の総称。生物濃縮性の高い毒物である。水銀中毒を引き起こし、水俣病および第二水俣病の原因ともなった。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    血小板第4因子(けっしょうばんだい4いんし、英: platelet factor 4、略称: PF4)は、CXCケモカインファミリーに属するサイトカインで、chemokine (C-X-C motif) ligand 4(CXCL4)という名称でも知られる。血小板の凝集中、このケモカインは活性化された血小板のから放出され、ヘパリン様分子の効果を緩和することによって血液凝固を促進する。こうした機能のため、創傷治癒や炎症に役割を有すると予測されている。通常はプロテオグリカンとの複合体として存在している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チロキシン結合グロブリン(Thyroxine-binding globulin、TBG)は、グロブリンタンパク質の一種で、ヒトではSERPINA7 遺伝子によってコードされている。TBGは、血中の甲状腺ホルモンと結合する。TBGは、トランスチレチン、血清アルブミンと共に、甲状腺ホルモンであるチロキシン(T4)およびトリヨードチロニン(T3)を血液に乗せて運ぶ3つの運搬体タンパク質の1つである。これら3つのタンパク質のうち、TBGはT4とT3に最も高い親和性を持つが、血中のT3とT4に結合するトランスチレチンやアルブミンに比べて最も低濃度で存在する。TBGはその低濃度にも拘わらず、血漿中のT4の大部分を運んでいる。血中のT4とT3の濃度が非常に低い為、TBGがそのリガンドで25%以上飽和する事は殆どない。トランスチレチンやアルブミンとは異なり、TBGはT4/T3との結合部位が1つである。TBGは主に肝臓で54kDaのタンパク質として合成される。ゲノムの観点からは、TBGはセルピンの一種であるが、このクラスの他の多くのタンパク質の様な阻害機能は持っていない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミリストレイン酸(Myristoleic acid)または9-テトラデセン酸(9-tetradecenoic acid)は、ω-5脂肪酸の一つ。Δ9デサチュラーゼによってミリスチン酸から生合成されるが、天然にはあまり見られない。この脂肪酸の主な供給源の一つはニクズク科の種油で、いくつかの種では油全体の30%以上を占める。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アミノアセトアルデヒド(Aminoacetaldehyde)は、化学式OHCCH2NH2の有機化合物である。通常の実験室条件下では不安定で、自己縮合を起こしやすい。は、安定な代用物である。 天然では、タウリンジオキシゲナーゼの作用によりタウリンを酸素化することで、亜硫酸塩H2NCH2CH(OH)SO3-を生じる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    パルミトレイン酸(英: Palmitoleic acid、数値表現 16:1(n-7)または16:1Δ9)は、ヒトの脂肪組織のグリセリドに含まれるCH3(CH2)5CH=CH(CH2)7COOHの化学式を持つ不飽和脂肪酸である。あらゆる組織に存在するが、特に肝臓で濃度が高い。デルタ-9不飽和化酵素の働きによってパルミチン酸から生合成される。炎症を抑えることでインスリンの感受性を上げ、またインスリンを分泌する膵臓のβ細胞の破壊を阻害することが示されている。パルミトレイン酸は、16:1Δ9という記号で略称される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シクロパミン(cyclopamine、11-デオキシジェルビン)は、ステロイド性ベラトルムアルカロイドに属する天然有機化合物である。催奇性を有し、致死的な出生異常を引き起こすアメリカ合衆国に自生するバイケイソウの近縁種 Veratrum californicum から単離される。シクロパミンは胎児の脳が2つに分かれることを妨げ(全前脳症)、単眼症を引き起こす。これらは、シクロパミンがヘッジホッグシグナル伝達経路 (Hh) を阻害することによって起こる。シクロパミンは、正常な発達におけるHhの役割に関する研究において有用であり、Hhが過剰発現しているような特定のがんに対する治療薬の候補ともなっている。 シクロパミンは、アイダホの牧場で野生のバイケイソウを食べた羊から産まれた単眼症の子羊から名付けられた(キュクロープス Cyclops を参照)。1957年、アメリカ合衆国農務省は11年計画の研究を開始し、出生異常の原因がシクロパミンであることを同定した。 シクロパミンは1964年に、11-デオキシジェルビンとして北海道大学の正宗直らによってVeratrum grandiflorumから単離された。その後1968年に、Keelerらによって独立に単眼症の原因物質として同定され、シクロパミンと命名された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    セロトニントランスポーター遺伝子(セロトニントランスポーターいでんし)とは、神経伝達物質であるセロトニンの伝達に関係する遺伝情報が書き込まれた遺伝子である。染色体番号17に存在する。組み合わせはSS型、SL型、LL型がある。 1996年11月、ヴュルツブルク大学精神医学部のペーター・レッシュ(PETER LESCH)らがS型がセロトニン分泌に関与すると発表。 この遺伝子型を持つ者の割合は国や民族によって異なる。日本人はS型保有傾向が欧米人に比べ5割も多い代わり、LL型保有者は3%と世界で最も少ない。傾向としては、アフリカ > 欧米 > アジアの順番で、LL型が減少する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    N-アセチルムラミン酸(N-Acetylmuramic acid、MurNAc、NAM)は、N-アセチルグルコサミンから誘導された単糖である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    BAX(Bcl-2-associated X protein、Bcl-2結合Xタンパク質)は、ヒトではBAX遺伝子によってコードされるタンパク質で、アポトーシスの調節因子である。BCL2L4(Bcl-2-like protein 4)という名称でも知られる。Bcl-2ファミリーのメンバーはヘテロまたはホモ二量体を形成し、さまざまな細胞活性に関与してアポトーシスの促進または抑制を行う調節因子として機能する。このタンパク質はBCL2とヘテロ二量体を形成し、アポトーシス活性化因子として機能する。BAXはミトコンドリアの電位依存性アニオンチャネル(VDAC)と相互作用して開口を増加させ、膜電位の消失とシトクロムcの放出を引き起こすことが報告されている。この遺伝子の発現はがん抑制因子であるp53によって調節されており、p53を介したアポトーシスに関与することが示されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ロフルミラスト(Roflumilast)は経口の選択的長時間型の一つである。抗炎症作用を有し、COPDにおける肺の炎症を治療する。 2010年6月、EUで慢性気管支炎に係る重症COPDについて承認され、2011年3月、米国でCOPD増悪の軽減について承認された。日本では2017年8月現在、未承認である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エルビテグラビル(Elvitegravir, EVG)は、HIV感染症の治療に用いられるである。2008年3月に日本たばこ産業株式会社からライセンスを受け、製薬会社ギリアド・サイエンシズ社が開発した。本剤は、2012年8月に米国食品医薬品局(FDA)より、初めてHIV治療を開始する成人患者を対象としたスタリビルドと呼ばれる合剤として承認された。2014年9月、FDAはエルビテグラビルを1錠の製剤としてヴィテクタ(Vitekta)の商品名で承認した。2015年11月、FDAは、ゲンボイヤと呼ばれる2つ目の固定用量配合剤の錠剤の一部として、HIV-1に罹患した患者への使用を承認した。 日本ではエルビテグラビル単剤では承認されておらず、スタリビルドは2013年4月に、ゲンボイヤは2016年6月にそれぞれ承認された。 第2相臨床試験の結果によると、リトナビルでブーストしたエルビテグラビルを1日1回投与した患者は、リトナビルでブーストしたを投与した患者に比べて、24週間後のウイルス量の減少が大きかった。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トファシチニブ (Tofacitinib)は、ヤヌスキナーゼ阻害剤であり、免疫抑制剤・分子標的薬のひとつ。製品名はゼルヤンツ、XeljanzやJakvinus。ファイザーにより開発され、日本では武田薬品工業が販売している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ナプロキセン (naproxen) は、芳香族カルボン酸に分類される有機化合物で、鎮痛、解熱、抗炎症薬として用いられる非ステロイド性抗炎症薬 (NSAIDs) の一種である。光学活性化合物であり、薬物として有効なのは (S)-(+)体 のエナンチオマーである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロトンアルデヒド (crotonaldehyde) は、不飽和アルデヒドに分類される有機化合物のひとつ。IUPAC命名法 では 2-ブテナール (2-butenal) と表される。別名として プロピレンアルデヒド (propionaldehyde)、β-メチルアクロレイン (β-methylacrolein)、メチルプロペナール (methylpropenal) などとも呼ばれる。CAS登録番号は [4170-30-3]。幾何異性体として cis型 と trans型の二種類があり、それぞれの CAS登録番号は順に [123-73-9]、[15798-64-8] である。分子式は C4H6O、示性式は CH3CH=CHCHO である。毒物及び劇物取締法により毒物に指定されている。消防法に定める第4類危険物 第1石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プラコグロビン(ジャンクションプラコグロビン、英: junction plakoglobin)またはγ-カテニン(英: gamma-catenin)は、ヒトではJUP遺伝子によってコードされるタンパク質である。プラコグロビンはカテニンファミリーのメンバーであり、β-カテニンと相同である。プラコグロビンは、心筋の介在板内に位置するデスモソームとアドヘレンスジャンクションの細胞質側構成要素であり、を固定し、隣接する心筋細胞を連結する機能を果たす。プラコグロビンの変異はと関係している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェニルアラニンヒドロキシラーゼ(Phenylalanine hydroxylase、PAH、EC 1.14.16.1)は、フェニルアラニンの芳香環にヒドロキシル基を付加させチロシンを合成する酵素である。別名、フェニルアラニン 4-モノオキシゲナーゼ、フェニルアラニナーゼ、フェニルアラニン 4-ヒドロキシラーゼ。 * フェニルアラニン * チロシン フェニルアラニンヒドロキシラーゼは、過剰なフェニルアラニンを変換する代謝経路の律速酵素である。 酵素反応における他の基質は酸素とテトラヒドロビオプテリンである。テトラヒドロビオプテリンはプテリジンのような酸化還元生化学因子として知られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ビメンチン(英: vimentin)は、間葉系細胞に特有の中間径フィラメント(英: intermediate filament)である。 ビメンチンは結合組織を構成する線維芽細胞、血管内皮細胞、平滑筋細胞、横紋筋細胞、骨・軟骨細胞、神経鞘細胞など多様な細胞に分布する主要な細胞骨格蛋白である。結合組織以外でもリンパ球やマクロファージなど血液細胞、中枢神経系のアストロサイトでの分布も確認されている。病理学的にはサイトケラチンとビメンチンに対するモノクローナル抗体を用いて、上皮性と非上皮性腫瘍の鑑別が行われている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ラクトフェリン(別名:ラクトトランスフェリン)は、母乳・涙・汗・唾液などの外分泌液中に含まれる鉄結合性の糖タンパク質である。1939年に牛乳中に含まれる「赤色タンパク質 (レッド・プロテイン)」として初めて報告された。その後、1960年にヒトとウシの乳より精製され、アミノ酸配列が決定された。ウシの場合689アミノ酸、ヒトの場合692アミノ酸から成っており、Nローブ・Cローブと呼ばれる球状のドメインが一本のポリペプチドで連結された構造を持つ。各ローブは1個の鉄イオンと強力に結合する。ラクトフェリンの粉末が赤色を帯びているのは、結合している鉄のためである。この2つのローブから成るラクトフェリンの立体構造は、血漿中の鉄輸送タンパク質であるトランスフェリンや、卵白の鉄結合タンパク質である(コンアルブミン)と共通であるが、ラクトフェリンの鉄イオンに対する親和性はこれらのタンパク質より100倍以上高い。つまり、ラクトフェリンは、生体内で鉄輸送タンパク質というよりも、鉄を捕捉し周囲の環境から取り除くことで、その機能を発揮する場合が多い。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シクロヘキサノン (cyclohexanone) は、有機化合物であり、シクロヘキサンのメチレン基がひとつカルボニル基に置き換わった環状ケトンである。 無色の液体で、樟脳様のアセトンとも似た臭いを持つ。長期放置すると酸化され黄色に変色する。 水にわずかに溶ける (5-10 g/100 mL)。通常の有機溶媒とは任意に混和する。別名:アノン。 日本では、消防法による第4類危険物 第2石油類、労働安全衛生法による2019年有害物ばく露作業報告対象物に指定されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ペルフルオロオクタンスルホン酸(ペルフルオロオクタンスルホンさん、perfluorooctanesulfonic acid)は、完全フッ素化された直鎖アルキル基を有するスルホン酸。共役塩基のアニオンが界面活性剤として用いられ、PFOS(ピーフォス、perfluorooctanesulfonate)と呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メトトレキサート(Methotrexate)は、葉酸代謝拮抗機序をもち免疫抑制剤に分類される薬剤である。抗悪性腫瘍薬(抗がん剤)、抗リウマチ薬、妊娠中絶薬などとして使用される。商品名は、抗がん剤としては、メソトレキセート (販売 : ファイザー)、抗リウマチ薬としては、リウマトレックス(同左)など。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サキナビル(Saquinavir)は、HIV/AIDSのHAART療法に用いられる経口抗ウイルス薬の一つである。をする。商品名インビラーゼ。通常リトナビルやロピナビル・リトナビル合剤と併用される。 WHO必須医薬品モデル・リストに収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フロセミド (Furosemide)は、心不全、肝硬変、腎疾患(英語版)による浮腫の治療に用いられるループ利尿薬の一つである。降圧を目的とした処方も行われる。性状は白色結晶性の粉末であり、水にはほとんど溶けない。経口投与でも筋注でも速やかに吸収され、血漿蛋白との結合率が高く、肝臓や腎臓以外の組織にはほとんど分布しない。ヘンレ係蹄(ヘンレループ)の太い上行脚の管腔側の膜のNa+・K+・2Cl-共輸送担体(NKCC2)を抑制することにより、NaCl、K+の再吸収を抑制し、速効性かつ強力な利尿作用を示すが、作用時間も短い。経口投与後約1時間、静脈注射後は5分以内で臨床効果が現れるが、効果を発現する用量は患者毎に異なる。 主な副作用は起立性低血圧、耳鳴り、光線過敏症 である。強心配糖体と併用すると低カリウム血症を示す恐れがある。そのため、ジギタリスなどの強心配糖体と併用するときはスピロノラクトンやグルコン酸カリウムを用いる。 代表的な商品名はラシックス錠・細粒・注およびオイテンシンカプセル(共にサノフィ社)。後発品多数(メーカ、剤形は略)。フロセミドが発見されたのは1962年であり、日本で発売されたのは1965年である(20mg注):表紙。 WHO必須医薬品モデル・リストに収載されている。 他の薬物を排泄する作用があるため、世界アンチ・ドーピング機関の禁止薬物に規定されている。米国ではウマのの予防や治療にも用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ダブラフェニブ(英語: Dabrafenib)は、BRAF 遺伝子変異陽性癌の治療に用いられる医薬品である。商品名はタフィンラー (Tafinlar) 。を制御するB-Raf酵素の阻害剤として作用する。ダブラフェニブはBRAF (V600) 変異を有する転移性悪性黒色腫への第I相ならびに第II相臨床試験で臨床的有効性と管理可能な安全性プロファイルを示した。米国FDAは2013年5月にBRAF V600E変異陽性の進行悪性黒色腫に対する治療薬としてダブラフェニブを承認した。開発コードGSK2118436。 臨床試験の結果、6か月から7か月でダブラフェニブおよび他のBRAF阻害薬への抵抗性が生じることが明らかとなった。この抵抗性を克服するため、BRAF V600E/K変異を有する悪性黒色腫の治療に際してダブラフェニブはMEK阻害薬トラメチニブと併用される。2014年1月には、トラメチニブとの併用療法がFDAに迅速承認された。また2015年9月には欧州でも悪性黒色腫の併用療法が承認された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シトクロムP450 2D6 (CYP2D6) はシトクロムP450 (CYP) の分子種の一種であり、人体に存在する生体異物を代謝する酵素の主要なものの1つである。主要な薬剤としてはタモキシフェン、フルボキサミン、コデインなどがCYP2D6による代謝を受ける。またCYP2D6により生物活性化される生体内物質が多く有る。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スクアレン (squalene) とは、トリテルペンに属する油性物質である。鮫の肝油から発見されたが、オリーブ油にも含まれ、人体では生合成され皮脂の主な成分として分泌される。これに水素を添加したスクアラン (squalane、またはスクワランとの表記)についても記す。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キノリン酸(キノリンさん、Quinolinic acid, QA, QUIN)は、トリプトファンの代謝経路であるキヌレニン経路における代謝物のひとつである。NMDA受容体のアゴニストとしての作用がある。 強い神経毒性があり、AIDS dementia complex(英)、アルツハイマー型認知症、ハンチントン病、筋萎縮性側索硬化症、多発性硬化症、パーキンソン病などの脳の神経変性過程に関わっている。脳内でキノリン酸が生産されるのは小膠細胞とマクロファージだけである。 ノルハルマンは、キノリン酸と3-ヒドロキシキヌレニン(英)の産生および一酸化窒素合成酵素の活性を抑制することから神経保護因子として作用する。 catechin hydrate(英)、クルクミン、EGCGなどの天然フェノールは、抗酸化とおそらくカルシウム流入機構によりキノリン酸の神経毒性を減少させると考えられる。COX-2阻害薬(英)もまたキノリン酸の神経毒性に対して保護作用を示す。これらCOX-2阻害薬は、大うつ病や統合失調症などの精神障害に対して効果を示すエビデンスがいくつか示されている。 キノリン酸は185–190℃で脱炭酸によりニコチン酸に分解される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    γ-ブチロラクトン(ガンマブチロラクトン、英: Gamma-Butyrolactone、略称: GBL)は化学式C4H6O2で表されるラクトンの一種である。水に可溶であり、独特の臭気を有している無色の液体である。化学の分野では有機溶媒や試薬として使われる。他にも臭気物質や染み抜き剤、接着剤や塗料のはがし剤としても用いられる。消防法に定める第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    性ホルモン結合グロブリン(Sex hormone-binding globulin, SHBG)または性ステロイド結合グロブリン(Sex steroid-binding globulin, SSBG)は、アンドロゲンとエストロゲンに結合する糖タンパク質である。プロゲステロン、コルチゾール、その他の副腎皮質ホルモン等の他のステロイドホルモンはトランスコルチン(CBG)に結合する。SHBGは、鳥類を除くすべての脊椎動物に存在する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    第IX因子(だい9いんし、英: factor IX、EC 3.4.21.22)は、凝固系を構成するセリンプロテアーゼの1つであり、クリスマス因子(Christmas factor)とも呼ばれる。ペプチダーゼファミリーS1に属し、このタンパク質の欠乏は血友病Bの原因となる。第IX因子は1952年に、Stephen Christmasという名前の少年がこの因子の欠損によって血友病を発症していることから発見された。 は、基本的な医療システムに必要な最重要医薬品のリストであるWHO必須医薬品モデル・リストに含まれている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェニルボロン酸、フェニルホウ酸(英: Phenylboronic acid、中国語: 苯硼酸)あるいはベンゼンホウ酸(英: benzeneboronic acid)はホウ素原子に2つのヒドロキシ基と1つのフェニル基が結合した化合物である。しばしばフェニル基 (C6H5-) を Ph と略して PhB(OH)2と書かれる。フェニルホウ酸は白い粉で有機合成において一般的に使われている。ホウ酸は弱いルイス酸であり、グリニャール試薬などに比べ扱いやすいことから有機合成に重要である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デオキシアデノシン(英:Deoxyadenosine)は、デオキシリボヌクレオシドである。デオキシアデノシンは、アデノシンヌクレオシドの誘導体であり、リボース糖の片側の2'位のヒドロキシ基が水素基に置換されているものがヌクレオチシドとの相違である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フォルスコリン(英: Forskolin)は、インド原産の植物であるコレウス・フォルスコリにより産生されるラブダンジテルペンである。ホルスコリンあるいはコレオノール(Coleonol)とも呼ばれる。ホルスコリンは、一般に細胞生理学の研究や実験でサイクリックAMP(cAMP)の濃度を上げるためによく利用されている。ホルスコリンは、アデニリルシクラーゼの酵素活性化とcAMPの細胞内濃度を高めることによって細胞受容体を再活性化する。cAMPは、ホルモンおよびその他の細胞外シグナルに対して細胞が適切な生物学的応答に必要な重要な信号伝達を行う。これは、視床下部又は下垂体軸における細胞の情報伝達のために必要とされ、さらにホルモンのフィードバック制御に必要とされる。サイクリックAMPは、プロテインキナーゼAとEpacのようなcAMPに反応する経路を活性化する役割をする。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ベンズアミド(benzamide)とは、白色固体の有機化合物で、安息香酸とアンモニアが脱水縮合したアミドにあたる。水にやや溶け、塩基性の水には易溶。また、多くの極性の有機溶媒にも可溶である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1-プロパノール (1-propanol) は、IUPAC系統名ではプロパン-1-オールとも呼ばれる一価の第一級アルコール。1-プロピルアルコール、 n-プロピルアルコール(ノルマル—)とも呼ばれる。融点 −126.5 ℃、沸点 97.15 ℃ の特異臭のある無色の液体で、水、有機溶媒に混和する。引火点は 24℃で、常温で引火する。人体への毒性は低く、日本を始め欧米など多くの国で食品添加物や香料としての使用が認められている。 消防法に定める第4類危険物 アルコール類に該当する。 1-プロパノールはフーゼル油を蒸留することで得られていたが、現在はほぼ全てエチレンのヒドロホルミル化によって得られるプロピオンアルデヒド(プロパナール)を、ロジウム錯体等の触媒によって水素化する方法で作られている(下記の反応)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アラノシン(Alanosine)は、膵癌の治療薬として研究されている物質である。代謝拮抗剤である。ゲムシタビンが効かなくなった末期の患者に実験的に投与される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フマル酸(フマルさん、Fumaric Acid)は構造式 HOOC–CH=CH–COOH (トランス体)、ブテンを基本骨格とするジカルボン酸である。IUPAC組織名は (E)-2-ブテン二酸 ((E)-2-butenedioic acid) で、アロマレイン酸 (allomaleic acid)、ボレチン酸 (boletic acid) とも呼ばれる。 ポリエステル樹脂や糖アルコールの製造、染料の媒染剤、香料として用いられる。食品添加物およびサプリメントとしても用いられ、酒石酸の替わりに飲料やベーキングパウダーへ添加されることがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オルニチントランスカルバミラーゼ(Ornithine transcarbamylase、OTC)は、カルバモイルリン酸とオルニチンからシトルリンとリン酸を作る時に働く酵素である。植物と微生物では、OTCはアルギニンの生合成にも関与する。哺乳類ではOTCはミトコンドリアに局在し、尿素回路の一部を担っている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロロメタンは、化学式がCH3Clで表されるハロメタンである。塩化メチル、R-40、HCC 40、フロン40とも呼ばれる可燃性の無色気体である。広義には、メタンの水素原子をいくつかの塩素原子で置換した化合物全般を指す。広義の意味で用いる場合には、1置換体と区別する意味でクロロメタン類とも呼ばれる。 かつて冷媒として用いられたが、発癌性、毒性があるため用いられなくなり、既に消費者の身近に存在していることはほとんどない。 日本では毒物及び劇物取締法により劇物に、PRTR法により第一種指定化学物質に指定されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フルクトース-1,6-ビスリン酸(フルクトース-1,6-ビスリンさん、Fructose 1,6-bisphosphate)とは、1位と6位の炭素がリン酸化したフルクトース分子のことである。β-D型を持つ分子は細胞中に多量に存在する。細胞に取り込まれたグルコースとフルクトースの大部分はこの形に変換される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1-デオキシノジリマイシン (1-Deoxynojirimycin (DNJ)) は、duvoglustatやモラノリン (moranoline) とも呼ばれており、桑の葉に含まれているイミノ糖の一種である。α-グルコシダーゼ阻害剤として知られている。1976年に桑白皮(桑の根皮)から単離された。1-デオキシノジリマイシンは、桑の葉から抽出したハーブティーを醸造することによって少量得ることができるが、商業的関心は、1-デオキシノジリマイシンの高い含有率の桑茶の開発やバチルス種などから生産することができないかなどの研究に向けられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キセノン(英: xenon、独: Xenon [ˈkseːnɔn])は原子番号54の元素。元素記号はXe。貴ガス元素の一つ。ラムゼー (W. Ramsay) と (M. W. Travers) によって1898年に発見された。 常温常圧では無色無臭の気体。融点-111.9 °C、沸点-108.1 °C。空気中にもごく僅かに(約0.087 ppm)含まれる。固体では安定な面心立方構造をとる。 一般に貴ガスは最外殻電子が閉殻構造をとるため、反応性はほとんど見られない。しかし、キセノンの最外殻 (5s25p6) は原子核からの距離が離れているため、他の電子による遮蔽効果によって束縛が弱まっており、比較的イオン化しやすい(イオン化エネルギーが他の貴ガス元素に比べて相対的に低い)。このため、反応性の強いフッ素や酸素と反応して、フッ化物や酸化物を形成する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒドロキシピルビン酸(hydroxypyruvic acid)は、化学式がC3H4O4のピルビン酸誘導体で、分子量は104.06146 g/molである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヨードベンゼン(iodobenzene)は、ベンゼンが持つ6つの水素のうちの1つがヨウ素に置換した有機化合物である。無色透明の揮発性の液体だが、時間の経過と共に赤味を帯びる。水には不溶。 ヨードベンゼンは有機化学における有用な合成中間体である。その理由はC-I結合がC-BrまたはC-Cl結合よりも弱く、ブロモベンゼンやクロロベンゼンよりも反応性が高い為である。ヨードベンゼンはマグネシウムと反応させるとグリニャール試薬であるフェニルマグネシウムヨージドを生成する。フェニルマグネシウムヨージドはフェニルマグネシウムブロミドと同等であり、合成化学的にはフェニルアニオンシントンの等価体である。 また、薗頭カップリングやヘック反応などのパラジウム触媒-クロスカップリング反応の基質としても重宝される。消防法に定める第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アラキドン酸(アラキドンさん、英: Arachidonic acid)は、不飽和脂肪酸のひとつ。4つの二重結合を含む20個の炭素鎖からなるカルボン酸で、ω-6脂肪酸に分類される。数値表現で 20:4(n-6)または20:4(Δ5,8,11,14)となる。 生体でのアラキドン酸カスケードを担う脂質。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ゲラニルゲラニル二リン酸(Geranylgeranyl diphosphate, GGPP)は、炭素数20の直鎖イソプレノイド。テルペノイド生合成経路の中間体である。ジテルペノイド(ジベレリンなど)やテトラテルペノイド(カロテノイドなど)の前駆物質でもある。また、トコトリエノール(ビタミンE)やクロロフィルなどの側鎖としても利用される。同様に、タンパク質のプレニル化にも使われる。ゲラニルゲラニルピロリン酸(Geranylgeranyl pyrophosphate)とも呼ばれるが推奨されない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2,3-ジヒドロキシ安息香酸(2,3-Dihydroxybenzoic acid)は、(Phyllanthus acidus)やオオサンショウモ(Salvinia molesta)で見られる天然のフェノールである。(Flacourtia inermis)の果実にも豊富に含まれる。ジヒドロキシ安息香酸の異性体の1つ、無色の固体である。シキミ酸経路で合成され、鉄イオンと強い錯体を形成して細菌内に吸収させる分子であるシデロフォアに取り込まれる。2,3-ジヒドロキシ安息香酸は、脱プロトン化して鉄に強く結合するカテコール基と、環がアミド結合を通じて様々な構造に結合するカルボン酸から構成される。が高く有名なシデロフォアには、エンテロバクチンがある。これは、3つの2,3-ジヒドロキシ安息香酸置換基がセリンのデプシペプチドに結合した構造を持つ。 鉄キレート剤や抗菌剤として利用できる可能性がある。 また、2,3-ジヒドロキシ安息香酸は、ヒトのアスピリン代謝物の1つである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウロキナーゼ(Urokinase)は、ウロキナーゼ型プラスミノーゲン活性化因子(uPA)とも呼ばれるセリンプロテアーゼ(EC 3.4.21.73)の1つである。ウロキナーゼは最初ヒトの尿から単離されて血栓溶解剤として利用されたが、現在では血液や細胞外マトリックスに存在することも確認されている。最もよく見られる生理学的基質はプラスミノーゲンで、これは不活性な酵素前駆体であり、セリンプロテアーゼの1つであるプラスミンを形成する。プラスミンの活性化は一連のタンパク質分解反応によって行われ、血栓溶解や細胞外マトリックスの分解が関与する生理学的環境に依存する。また血管の病気やがんにつながる。 ウロキナーゼ自身もプラスミンと同様に、不活性の前駆体である1本鎖ウロキナーゼ(プロウロキナーゼ)として作られ、プラスミン等によりL158・I159間が切断されて活性型の2本鎖ウロキナーゼ(ジスルフィド結合でつながっている)に変換される。尿から得られるものは2本鎖ウロキナーゼであるが、これには血栓に対する親和性はない。1本鎖ウロキナーゼは血栓に対する親和性があり、主として血栓上で活性化されてプラスミノーゲンを活性化する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジメチルアリルtransトランスフェラーゼ(dimethylallyltranstransferase)はテルペノイドやステロイドの合成に関わるプレニル基転移酵素の1つで、次の化学反応を触媒する酵素である。 ジメチルアリル二リン酸 + イソペンテニル二リン酸 二リン酸 + ゲラニル二リン酸 組織名はdimethylallyl-diphosphate:isopentenyl-diphosphate dimethylallyltranstransferaseである。主としてこの活性のみを示す場合には、ゲラニル二リン酸シンターゼ(geranyl diphosphate synthase)とも呼ぶ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サリチルアルデヒド (salicylaldehyde) とは、有機化合物の一種で、ベンズアルデヒドのオルト位(2位)がヒドロキシ基で置換された構造を持ち、即ちヒドロキシベンズアルデヒドの異性体のひとつである。合成中間体、香料などの用途に利用される無色の液体で、アーモンド様な苦みのある臭いを持つ。消防法による第4類危険物 第3石油類に該当する。 フェノールに対しクロロホルムと強塩基が作用するとサリチルアルデヒドが生成する。この反応はライマー・チーマン反応と呼ばれる。工業的にはα-クレゾールから合成される。 分子内のアルデヒド基とフェノール性ヒドロキシ基で水素結合を完結させるため、水にほぼ不溶、エタノール、エーテルなどの有機溶媒に易溶である。2分子のサリチルアルデヒドがエチレンジアミンと縮合したイミンはサレンと呼ばれ、配位子として有機金属化学で利用される。 香料としてはバター、カラメル、ナッツ、シナモンやフルーツ系のフレーバーに少量使用されるほか、クマリンの合成原料としての用途もある。ラットに対する急性経口毒性は半数致死量0.9mg/kg、ウサギに対する急性経皮毒性は半数致死量3.0mg/kg。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カスパーゼ-1(英: caspase-1)は進化的に保存された酵素であり、炎症性サイトカインであるインターロイキン-1β(IL-1β)、インターロイキン-18(IL-18)前駆体のタンパク質分解による切断や、の誘導因子であるの活性型成熟ペプチドへの切断を行う。インターロイキン-1β変換酵素(interleukin-1β converting enzyme、ICE)としても知られる。カスパーゼ-1は、炎症応答の開始因子として細胞性免疫に中心的な役割を果たす。カスパーゼ-1はインフラマソーム複合体の形成を介して活性化されると、IL-1βとIL-18の2つの炎症性サイトカインの切断・活性化によって炎症促進応答を開始するとともに、ガスダーミンDの切断によって溶解性プログラム細胞死経路であるピロトーシスを開始する。カスパーゼ-1によって活性化された2つの炎症性サイトカインは細胞から分泌され、さらに近隣の細胞での炎症応答を誘導する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリセチン(Tricetin)は、フラボンの1つである。ユーカリ等のの花粉に含まれる珍しいアグリコンである。ヒトの細胞MCF-7において、抗がん効果が示されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リコペン(リコピン、lycopene 英語: [ˈlaɪkəˌpiːn, ˈlaɪkoʊˌpiːn])は、カロテンの1種で、鮮やかな赤色を呈す有機化合物である。クエン酸マグネシウムとグリシン酸マグネシウムに加えて、高血圧のサプリメントとしてハーバード大学医学部から推奨されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スタチン(Statine)は、ペプシンやその他の酸プロテアーゼの阻害剤である(Pepstatin)の配列に2度現われるγ-アミノ酸である。スタチンはペプチド触媒の正四面体型遷移状態を模倣しているため、ペプスタチンの阻害活性に関与していると考えられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    Rb遺伝子(Rbいでんし、英:Retinoblastoma Gene)とはがん抑制遺伝子の一つであり、網膜芽細胞腫の原因遺伝子として初めて発見された。細胞周期がS期へ移行するのを抑制しているほか、現在では多くの癌の発症に関与していることが分かっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チミジン二リン酸(チミジンにリンさん、Thymidine diphosphate)、略号 dTDPはデオキシヌクレオチドの一種である。すなわちチミジンデオキシヌクレオシドのピロリン酸エステルである。TDPはピロリン酸基、五炭糖のリボース、核酸塩基のチミンより構成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウリプリスタル酢酸エステル(ウリプリスタルさくさんエステル、英: Ulipristal acetate)は、Ellaの商品名で販売されている緊急避妊(避妊)および子宮筋腫に使用される薬物。緊急避妊薬として、狭義の性交から120時間以内に使用する必要がある。子宮筋腫の場合、最長6か月間かかる場合がある。経口投与する。 一般的な副作用には、頭痛、吐き気、疲労感、腹痛などがある。すでに妊娠している人には使用してはならない。これは、選択的プロゲステロン受容体修飾薬(SPRM)に分類される薬剤である。プロゲステロンの影響を防ぎ、排卵を止めることによって機能する。 ウリプリスタル酢酸エステルは、2010年に米国で医療用に承認された。これは、世界保健機関の必須医薬品リストに含まれている。この薬剤を利用するアクセスを改善するために、妊娠可能なすべての人に、必要に応じて処方箋を与えることを勧めるという意見を持つ人もいる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    レンバチニブ(Lenvatinib)は、エーザイが開発したマルチキナーゼ阻害薬であり、様々ながんの治療に用いられ得る。キナーゼおよびキナーゼを阻害する。商品名レンビマ。開発コードE7080。 放射性ヨウ素による治療に抵抗性の甲状腺癌の治療薬として希少疾病用医薬品に指定されている(日米で2012年、欧州で2013年)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    GRIA2またはGluR2(glutamate ionotropic receptor AMPA type subunit 2、ionotropic glutamate receptor 2)は、ヒトではGRIA2(GLUR2)遺伝子によってコードされるタンパク質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジエチルエーテル(diethyl ether)とは、エチル基とエチル基がエーテル結合した分子構造をしている有機化合物である。密度は0.708 g/cm3。特徴的な甘い臭気を持つ、無色透明の液体である。単にエーテルというときはこのジエチルエーテルのことを指す場合が多い。エチルエーテル、硫酸エーテルとも。IUPAC名ではエトキシエタンとも呼ばれる。溶媒や燃料として使われる。かつては吸入麻酔薬としても使われた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    タウタンパク質(タウタンパクしつ、英: Tau protein)は、微小管を安定化するタンパク質である。ギリシャ文字の τ(タウ)を用いて、τタンパク質と表記されることもある。タウタンパク質は中枢神経系の神経細胞に豊富に存在するが、他の部位では一般的ではない。中枢神経系のアストロサイトやオリゴデンドロサイトでも極めて低レベルで発現している。アルツハイマー病やパーキンソン病のような神経系の病理や認知症は、適切な微小管安定化能を失ったタウタンパク質と関係している。 タウタンパク質は、ヒトではに位置するMAPT (microtubule-associated protein tau) と名付けられた単一の遺伝子からの産物であり、選択的スプライシングによって複数のアイソフォームが合成される。 タウタンパク質は微小管の重合に必須の熱安定性タンパク質として1975年に同定され、その後天然変性タンパク質として特徴づけられた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ラパチニブ(Lapatinib)は上皮成長因子受容体(EGFR)とHer2/neuの双方を阻害する二重チロシンキナーゼ阻害剤であり、HER2過剰発現が確認された手術不能乳癌または再発乳癌に対し使用される、内服の分子標的薬と呼ばれる抗腫瘍薬の一種である。ノバルティス社よりタイケルブの商品名で発売されている。開発コードD08108。(2015年にグラクソ・スミスクライン社よりオンコロジー事業はノバルティス社へ譲渡されたため、販売移管した。)

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クマリン (coumarin) は桜の葉に代表される植物の芳香成分の一種。ラクトンの一種で、芳香族化合物である。バニラに似た芳香があり、苦く、芳香性の刺激的な味がする。桜湯や天然のオオシマザクラの塩蔵葉を用いた桜餅の香りはこれらに含まれるクマリンなどによるものである。 クマリンは、シナモンの香り成分のシンナムアルデヒドやコーヒーの香り成分であるコーヒー酸とともに天然の香り成分として知られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    β-カルボリン(ベータ-カルボリン、β-carboline, 9H-pyrido[3,4-b]indole)は、β-カルボリン類として知られる化合物の一分類の基本骨格である有機アミン。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヨードメタン(英: iodomethane)は、分子式 CH3I で表される有機化合物である。メタンの一ヨウ化物であり、別名はヨウ化メチル(英: Methyl Iodide)である。常温で無色透明の液体で、エタノール、ジエチルエーテルに任意の割合で溶ける。空気中で一部が光により分解し薄い紫色を帯びることがあるため、褐色ビンを用いて暗所保存する。その際には銅を安定化剤として用いる場合がある。有機合成化学においてはメチル化剤として良く用いられ、SN2反応によりメチル基を付加することが多い。毒性が高い。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    c-MetまたはMETは、ヒトではMET遺伝子によってコードされるタンパク質で、肝細胞増殖因子受容体(hepatocyte growth factor receptor、HGFR)としても知られる。このタンパク質はチロシンキナーゼ活性を有する。一本鎖の前駆体タンパク質への翻訳後、αサブユニットとβサブユニットへ切断される。両者はジスルフィド結合で連結されて成熟型の受容体を形成する。 METは1回膜貫通型の受容体型チロシンキナーゼで、胚発生、器官形成、創傷治癒に必須である。MET受容体の既知のリガンドは、肝細胞増殖因子/細胞分散因子(HGF/SF)とそのスプライシングによるアイソフォーム(NK1、NK2)のみである。METは通常上皮由来の細胞で発現しており、一方HGFの発現は間葉由来の細胞に限定されている。HGFがMETに結合すると、METは二量体化し活性化されるが、その過程は完全には理解されていない。 がんでのMETの異常な活性化は予後の悪さと相関しており、異常な活性型のMETは腫瘍の成長や、腫瘍へ栄養を供給する血管の形成(血管新生)、他の器官へのがんの拡散(転移)を引き起こす。METは、腎臓、肝臓、胃、乳房、脳などの多くのタイプの悪性腫瘍で調節異常がみられる。通常、METを発現しているのは幹細胞と前駆細胞だけであり、胚で新たな組織を形成したり、成体で損傷組織を再生するための浸潤性増殖を可能にする。しかし、がん幹細胞では正常な幹細胞のMETの発現能力が乗っ取られており、がんの持続や他の部位への拡散の原因となっている。MET遺伝子のさまざまな変異が乳頭状腎細胞がんと関係しており、METの過剰発現や、HGFとの共発現による自己分泌型の活性化の双方が、発がんへ関与していると示唆されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ブリンゾラミド(Brinzolamide)はであり、開放隅角緑内障患者の眼圧低下に使用される医薬品である。商品名はエイゾプトで、白色-微黄白色の無菌懸濁性点眼製剤として製造販売される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シトクロムP450 3A4 (CYP3A4) はシトクロムP450 (CYP) の分子種の一種であり、人体に存在する生体異物を代謝する酵素の主要なものの1つである。CYPによる酸化反応では寄与する範囲が最も広い。また、肝臓に存在するCYPのうちの大部分を占める。 胎児は肝臓その他の組織でCYP3A4ではなく同様な基質に作用するCYP3A7を作る。成長に伴い、CYP3A7はCYP3A4に徐々に置き換えられていく。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセトアミノフェン(英: Acetaminophen、USAN、JAN)またはパラセタモール(英: Paracetamol、INN)は、解熱・鎮痛薬の一つである。 主に発熱、悪寒、頭痛などの症状改善に用いられ、一般用医薬品の感冒薬にも広く含有されるが、過剰服用に陥る事例も少なくない。 1877年に発見され、米国と欧州で最も利用される鎮痛薬・総合感冒薬である 。WHO必須医薬品モデル・リストに収録されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルコース依存性インスリン分泌促進ポリペプチド(グルコースいぞんせいインスリンぶんぴそくしんポリペプチド、Glucose-dependent insulinotropic polypeptide;GIP)または胃抑制ポリペプチド(いよくせいポリペプチド、Gastric Inhibitory Polypeptide)は、セクレチン系の抑制ホルモンである。胃酸分泌も弱く抑制するが、主要な作用はインスリンの分泌を促進することである。 グルカゴン様ペプチド-1(GLP-1)と共にインクレチンと呼ばれるホルモン群に属する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    CYP17A1(シトクロム P450 17A1, steroid 17-alpha-monooxygenase 17α-hydroxylase/17,20 lyase/17,20 desmolase) はヒトにおいてCYP17A1 遺伝子がコードする酵素であり、副腎皮質の網状帯に存在する。シトクロムP450はコレステロール、ステロイドなどの脂質の合成や薬物代謝に関する多くの反応を触媒する。 このタンパクは小胞体に局在し、 17alpha-hydroxylase および17,20-lyase 活性をもち、プロゲスチン、ミネラルコルチコイド、グルココルチコイド、アンドロゲン、およびエストロゲンを作るステロイド合成経路の鍵酵素である。 特に、CYP17A1は プレグネノロン およびプロゲステロン のステロイドD環の17位の炭素に水酸基を付加 (ヒドロキシラーゼ活性)し, あるいは 17-ヒドロキシプロゲステロンおよび 17-ヒドロキシプレグネノロンに作用してステロイド骨格から側鎖を切り離す(リアーゼ活性)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フッ化 4-(2-アミノエチル)ベンゼンスルホニル塩酸塩 (4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride) またはAEBSFは、水溶性の不可逆的セリンプロテアーゼ阻害剤である。分子量は239.5Da。キモトリプシン、カリクレイン、プラスミン、トロンビンおよびトリプシンなどのプロテアーゼを阻害する。選択性はPMSFと類似するが、この物質はより低pHでも安定である。主に0.1 - 1.0 mmol/L濃度で用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒスタミン (histamine) は分子式C5H9N3、分子量 111.14 の活性アミンである。1910年に麦角抽出物中の血圧降下物質としてヘンリー・ハレット・デールとパトリック・プレイフェア・レイドローが発見した。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒドロキシメチルフルフラールは、糖や炭水化物の熱分解により生成される、分子式C6H6O3の有機化合物である。HMFと略記される。HMFは牛乳やフルーツジュース、蒸留酒や蜂蜜などの食品を加熱すると微量ながら生成することが知られている。またたばこにも含まれていることが近年の研究から明らかとなった。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1-ヘプタノール (1-heptanol) は、構造式がCH3(CH2)6OHで表される7炭素鎖のアルコールである。なお、ヒドロキシル基の位置の関係で、第一級アルコールに分類される。常温常圧においては、無色透明の液体で水にはほとんど溶けないが、ジエチルエーテルとエタノールには混和する。芳香を持つため化粧品や香料に使われる。消防法に定める第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ニコチン酸(ニコチンさん、英: nicotinic acid、Na)とは、の3つの構造異性体の中の1つである。ニコチン酸とニコチン酸アミドを総称してナイアシンと呼ばれる。ナイアシンは、ビタミンB群の中のビタミンB3に当たる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジエチルスチルベストロール(Diethylstilbestrol)は、かつて流産防止剤などに用いられた合成女性ホルモン(合成エストロゲン)の薬剤である。略してDESとも呼ばれる。 誘導体に、DESのフェノールの水酸基がリン酸に置き換わったがあり、こちらは前立腺癌治療薬として用いられていたが、現在は日本を含むほとんどの国で使用が中止されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    K252aは、土壌菌Nocardiopisis sp. から単離されたアルカロイドである。このスタウロスポリン構造類縁体は極めて強力なCaMキナーゼおよびホスホリラーゼキナーゼの細胞透過性を有する阻害剤である(IC50はそれぞれ1.8および1.7 nmol/L)。高濃度では、セリン/スレオニンプロテインキナーゼの有効な阻害剤でもある(IC50は10〜30 nmol/L)。 K252aはC2マウス筋芽細胞において筋肉分化を促進すると報告されており、ラット褐色細胞腫PC12細胞の神経分化をtrkチロシンキナーゼ活性の阻害によって妨害することが示されている。K252aはNGFで誘導されるTrk Aのチロシンリン酸化を阻害する。 1995年にK252aの全合成が報告されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    モノフルオロ酢酸アミド(モノフルオロさくさんアミド、英文名称Fluoroacetamide)は、モノフルオロ酢酸から誘導される一級アミド。吸湿性のある白色の粉末。アセトアミドの α炭素上の水素がひとつフッ素に置き換わった構造を持ち、フルオロアセトアミドとも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クリオキノール(Clioquinol)またはキノホルム(Chinoform、Quinoform)またはヨードクロルヒドロキシキン(Iodochlorhydroxyquin)またはPBT1は、抗真菌作用と抗原虫作用を持つ化合物である。多量投与で神経毒性を持つ。8-キノリノール誘導体であり、DNA複製に関する酵素を阻害する。これはウイルスや原生動物感染症に対しても有効である。日本ではスモンを引き起こして1970年に使用が中止されたが、2015年時点で販売が継続されている国もある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-ヒドロキシ安息香酸 (4-ヒドロキシあんそくこうさん、4-hydroxybenzoic acid) または p-ヒドロキシ安息香酸 (パラヒドロキシあんそくこうさん)とは、安息香酸のパラヒドロキシ誘導体。アルコールやエーテル、アセトンには易溶で、水やクロロホルムにわずかに溶ける無色の結晶。サリチル酸(2-ヒドロキシ安息香酸)の位置異性体にあたる。 生体内ではユビキノン合成などの中間体として重要であり、動物、植物、微生物を含め幅広い生物が合成している。したがって食品中にも存在しており、ココナツやアサイーなどには多く含まれている。4-ヒドロキシ安息香酸のエステルはパラベンと呼ばれ、保存料として用いられる。4-ヒドロキシ安息香酸はその原料である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アジマリシン(Ajmalicine)は、高血圧治療薬として用いられる物質である。Card-Lamuran, Circolene、Cristanyl、Duxil、Duxor、Hydroxysarpon、Iskedyl、Isosarpan、Isquebral、Lamuran、Melanex、Saltucin Co、Salvalion、Sarpan等の様々な商標名で市販されている。、ニチニチソウ、等の様々な植物に含まれるアルカロイドでもある。 アジマリシンは、構造的にはヨヒンビン、やその他のヨヒンバン誘導体に関連している。またと同様にα1アドレナリン受容体のアンタゴニストとして働く。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イキサゾミブ (英語: Ixazomib) は、経口プロテアソーム阻害剤の一つである。再発・難治性の多発性骨髄腫治療薬。ホウ酸基をクエン酸で環状に包み込んだイキサゾミブクエン酸エステルが製剤に用いられている。週1回の服薬で効果が期待できる。開発コードMLN9708。 米国では2015年7月に承認申請され、同年9月に優先審査指定され、同年11月に承認された。欧州では2015年8月に販売許可申請が受理された。日本では2016年2月に希少疾病用医薬品に指定され、2017年3月に承認された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フロレト酸(Phloretic acid)は、フェノール化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジヒドロ葉酸(ジヒドロようさん、英: dihydrofolic)は、ジヒドロ葉酸還元酵素(EC 1.5.1.3)によってテトラヒドロ葉酸を生成する葉酸誘導体である。ジヒドロ葉酸は細菌の細胞分裂に影響する。 一般にはビタミンB9として知られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピコリン酸(Picolinic acid)は、ピリジンの2位の水素がカルボキシル基に置換した化合物である。 ピコリン酸は人体中においてクロム、亜鉛、マンガン、銅、鉄そしてモリブデンなどの元素に対しキレート配位子として作用し、フェニルアラニン、トリプトファンおよびアルカロイドの合成に関係する。亜鉛と錯体を形成し腸壁から循環器系への亜鉛の透過を促進する。また、実験ではカルシウムの定量的検出にも用いられる。 商業的にはピコリン酸は薬品(特に麻酔薬)の中間生成物として、金属塩はサプリメントとして使われている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリヨードチロニンまたはトリヨードサイロニン(Triiodothyronine, TIT)は甲状腺ホルモンの一種である。T3とも言われる。 甲状腺刺激ホルモン(TSH)はチロキシン(T4)とトリヨードチロニンの生産を促す。視床下部では、T4はT3に変換され、TSHは主にT3によって阻害される(負のフィードバック)。甲状腺はT3よりもT4を多く生産するため、血漿中でのT4の濃度はT3の濃度より40倍も高くなる。体内を循環するT3の大部分はこうしてT4の5位の炭素が脱ヨード化されたものである。 トリヨードチロニンの構造はチロキシンと類似しているが、1分子あたりヨウ素原子が1つだけ少ない。さらに、T3は活性が強く少量しか生産されない。 T3は最も強力な甲状腺ホルモンで、体温、成長、心拍数などを含めた体内のほぼ全ての過程に関与している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イバンドロン酸(イバンドロンさん、英: ibandronic acid)、またはイバンドロネート(英: ibandronate)は、ビスフォスフォネート薬群のひとつ。日本での製品名はボンビバで静脈注射剤と錠剤がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コリン(Choline, Cholin)は、循環器系と脳の機能、および細胞膜の構成と補修に不可欠な水溶性の栄養素である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    α-リノレン酸(アルファ-リノレンさん、英: Alpha-linolenic acid、ALA、数値表現 18:3(n-3)または18:3(Δ9,12,15))は、多価不飽和脂肪酸の一種で多くの植物油で見られる。IUPAC名 all-cis-9,12,15-オクタデカトリエン酸となる。また、生理学では18:3(n-3)と表記される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    3-ホスホグリセリン酸(3-ホスホグリセリンさん、Glycerate 3-phosphate)は生化学的に重要な、3つの炭素からなる有機化合物の一つで、解糖系やカルビン回路の代謝中間体となる。3-ホスホグリセリン酸は、6つの炭素からなる不安定な中間体が分割されて生成する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フィロキノン(Phylloquinone)は、ナフトキノン骨格をもつ化合物の1つ。光合成装置のうち光化学系Iにおいて電子伝達体として機能する。また動物体内ではガンマグルタミルカルボキシラーゼの補因子として働くことから、ビタミンK1とも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    CHEK2(checkpoint kinase 2)は、セリン/スレオニンキナーゼCHK2をコードするがん抑制遺伝子である。CHK2は、DNA損傷に応答したDNA修復、細胞周期の停止やアポトーシスに関与している。CHEK2遺伝子の変異はさまざまながんと関係している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    N-アセチルガラクトサミン(N-アセチル-D-ガラクトサミン、GalNAc)は、ガラクトースから誘導された単糖である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ビス(クロロメチル)ケトン (bis(chloromethyl) ketone) は、極めて危険有害な物質の一つ。この固体はクエン酸の製造に使われる。暴露または接触すると皮膚や目、咽喉、肺、肝臓、腎臓を冒し、頭痛や失神を惹き起こす。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チアミンピロリン酸(Thiamine pyrophosphate、TPP)またはチアミン二リン酸(thiamine diphosphate、ThDP)は、によって合成されるチアミン誘導体である。チアミンピロリン酸はチアミン(ビタミンB1)の活性型である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ネルボン酸(ネルボンさん、英: Nervonic acid、数値表現 24:1(n-9))はテトラコセン酸とも呼ばれ、一価不飽和のω-9脂肪酸の一つ。ネルボン酸は神経細胞ミエリンの生合成において確認された。ヒトの脳の白質のスフィンゴ脂質を構成する脂肪酸に比較的多く見られる。 ネルボン酸は、スフィンゴ脂質中のネルボン酸濃度が不足する副腎白質ジストロフィーや多発性硬化症のような脱髄疾患の治療に使われる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロニジン(Clonidine)とは、血液脳関門を比較的容易に通過して、中枢神経系でも作用することが可能な選択的アドレナリンα2受容体のアゴニストである。主たる効能は降圧作用である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イソプレン(isoprene)は構造式CH2=C(CH3)CH=CH2の、二重結合を2つ持つ炭化水素。ジエンの一種。IUPAC命名法では 2-メチル-1,3-ブタジエン (2-Methyl-1,3-butadiene) と表される。分子量 68.12、融点 −145.95 ℃、沸点 34.067 ℃。室温では揮発性の高い無色の液体で、ゴムもしくは都市ガス様の臭気を持つ。可燃性・引火性に富み、特に霧状で大気中に存在すると爆発の危険がある。CAS登録番号は [78-79-5]。消防法に定める第4類危険物 特殊引火物に該当する。 産業のみならず生体物質としても有名ではあるが、場合によっては環境や人体に多大な影響を及ぼす恐れがある。 イソプレンは天然ゴムのモノマーであり、イソプレノイドと総称される天然有機化合物類の共通構造モチーフでもある。イソプレノイドの分子式はイソプレンの倍数であり、(C5H8)nで表される(イソプレン則を参照)。生物システムにおける機能性イソプレン単位は、ジメチルアリル二リン酸 (DMAPP) および異性体のイソペンテニル二リン酸 (IDP) である。 英語の単数形 “isoprene”および“terpene”は本化合物を指すが、複数形の“isoprenes”あるいは“terpenes”はテルペノイド(イソプレノイド)を指す。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ブルトン型チロシンキナーゼ (Bruton's tyrosine kinase, 略称 Btk または BTK)は 酵素 のひとつで、ヒトでは BTK 遺伝子によりコードされている。 BTKは プロテインキナーゼ であり、リンパ球B細胞 の成熟に重要な役割を果たす。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒューマニン (humanin) はポリペプチドの一種。ヒトの脳の後頭葉から発見され、ニューロンの死滅を防ぐ作用があるとされる。2001年、慶應義塾大学の西本征央によって発見された。アルツハイマー病の治療薬として用いることが考えられている。 構造はH-Met-Ala-Pro-Arg-Gly-Phe-Ser-Cys-Leu-Leu-Leu-Leu-Thr-Ser-Glu-Ile-Asp-Leu-Pro-Val-Lys-Arg-Arg-Ala-OH。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フッ化アルミニウム(フッかアルミニウム、aluminium fluoride)は化学式 AlF3 で表されるフッ素の化合物である。外観は白色の結晶性粉末である。水酸化アルミニウムまたは金属アルミニウムをフッ化水素と反応させると得られる。結晶構造は酸化レニウム(VI) と類似しており、アルミニウム周りは歪んだ八面体構造をとる。 この構造のため、他のハロゲン類縁体と異なり耐火性を持つ。塩化アルミニウム AlCl3、臭化アルミニウム AlBr3、ヨウ化アルミニウム AlI3 はいずれも液体状態では二量体を形成し、蒸発する際も二量体のままである。一方フッ化アルミニウムの場合、約1000℃における気体状態では D3h の対称性を持つ三角形の構造をとる。Al−F 結合距離は163pmである。 フッ化アルミニウムはアルミニウムを電解製錬する際に添加剤として用いられる。アルミナの融点を下げ、導電性を高める効果を持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ドーパミン(英: dopamine)は、中枢神経系に存在する神経伝達物質で、アドレナリン、ノルアドレナリンの前駆体でもある。運動調節、ホルモン調節、快の感情、意欲、学習などに関わる。セロトニン、ノルアドレナリン、アドレナリン、ヒスタミン、ドーパミンを総称してモノアミン神経伝達物質と呼ぶ。またドーパミンは、ノルアドレナリン、アドレナリンと共にカテコール基をもつためカテコールアミンとも総称される。医学・医療分野では日本語表記をドパミンとしている。 統合失調症の陽性症状(幻覚・妄想など)は基底核や中脳辺縁系ニューロンのドーパミン過剰によって生じるという仮説がある。この仮説に基づき薬物療法で一定の成果を収めてきているが、一方で陰性症状には効果が無く、根本的病因としては仮説の域を出ていない。覚醒剤はドーパミン作動性に作用するため、中毒症状は統合失調症に類似する。強迫性障害、トゥレット障害、注意欠陥多動性障害 (ADHD) においてもドーパミン機能の異常が示唆されている。 一方、パーキンソン病では黒質線条体のドーパミン神経が減少し筋固縮、振戦、無動などの運動症状が起こる。また抗精神病薬などドーパミン遮断薬の副作用としてパーキンソン症候群が起こることがある。 中脳皮質系ドーパミン神経は、とくに前頭葉に分布するものが報酬系などに関与し、意欲、動機、学習などに重要な役割を担っていると言われている。新しい知識が長期記憶として貯蔵される際、ドーパミンなどの脳内化学物質が必要になる。陰性症状の強い統合失調症患者や、一部のうつ病では前頭葉を中心としてドーパミンD1の機能が低下しているという仮説がある。 下垂体漏斗系においてドーパミンはプロラクチンなどの分泌抑制因子として働く。そのためドーパミン作動薬は高プロラクチン血症の治療薬として使用され、逆にドーパミン遮断薬(抗精神病薬など)は副作用として高プロラクチン血症を誘発する。 ドーパミン部分作動薬のアリピプラゾール(エビリファイ)は低プロラクチン血症を誘発することが分かっており、高プロラクチン血症の治療効果もある。その副作用として異常性欲や性的倒錯があり、アメリカ食品医薬品局(FDA)は添付文書で黒枠の警告をしている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ゾニサミド(Zonisamide)は、サルファ薬系の神経作用薬であり、小児または成人のてんかん発作(部分発作、全般発作、混合発作)治療薬またはパーキンソン病治療薬として用いられる。抗てんかん薬は商品名エクセグラン、抗パーキンソン病薬トレリーフで知られる。(ともに大日本住友製薬製造販売)

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヘキサン (hexane) は、有機溶媒の一種で、直鎖状アルカンである。常温では無色透明で、灯油のような臭いがする液体。水溶性は非常に低い(20℃で13 mg/L)。ガソリンに多く含まれ、ベンジンの主成分である。 構造異性体の枝分かれアルカンとして、2-メチルペンタン、3-メチルペンタン、2,2-ジメチルブタン、および 2,3-ジメチルブタンの4つが知られ、イソヘキサンと総称される(2-メチルペンタンのみを指す場合もある)。それらの異性体と区別するため、ヘキサンは特にノルマルヘキサン (n-hexane) と呼ばれることもある。また、これらの異性体を含めた炭素6個のアルカン群の呼称として、ヘキサン (hexanes:複数形) という言葉を使うこともある。 600〜700℃で熱分解を起こし、水素、メタン、エチレンなどを生ずる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アレクチニブ(Alectinib)は、中外製薬が創薬したALK()阻害薬であり、ALK 融合遺伝子陽性の非小細胞肺癌(NSCLC)の治療に用いられる。同種同効薬のクリゾチニブに耐性となった患者でも効果が期待できる。クリゾチニブやセリチニブと異なり、ベンゾ[b]カルバゾール骨格を有する。各種キナーゼの中でALKへの選択性が極めて高い。商品名アレセンサ。開発コードAF802、RG7853。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロテインC(英: protein C、別名: 第XIV因子(blood coagulation factor XIV)、autoprothrombin IIA)は酵素前駆体で、タンパク質分解を経て活性化されたプロテインC(活性化プロテインC、APC)はヒトや他の動物において抗血液凝固作用、炎症、細胞死、血管の透過性の維持に重要な役割を果たす。APCは、主に活性化された第V因子と第VIII因子(それぞれ第Va因子と第VIIIa因子と呼ばれる)をタンパク質分解によって不活性化することで、これらの機能を果たす。APCはその活性部位にセリン残基を含むため、セリンプロテアーゼに分類される。プロテインCは、ヒトでは2番染色体のPROC遺伝子にコードされる。 酵素前駆体型のプロテインCは血漿中を循環するビタミンK依存性糖タンパク質であり、ジスルフィド結合で連結された軽鎖と重鎖の2本のポリペプチド鎖から構成される。プロテインC酵素前駆体は、血液凝固に深く関わるタンパク質トロンビンに結合することで活性化される。活性化はと(EPCR)の存在によって大きく促進される。EPCRは血管内皮細胞の細胞表面に発現しているため、APCは主に血管内皮細胞の近傍に存在し、血管内皮細胞と白血球に影響を与える。プロテインCの重要な役割は抗血液凝固作用であり、プロテインCの欠乏あるいはAPCに対する抵抗性によって、危険な血栓の形成(血栓症)のリスクが増大する。 組換え型ヒト活性化プロテインC製剤はという名称で知られ、イーライリリー・アンド・カンパニーによってザイグリス(Xigris)の商標名で開発・販売された。しかし、その臨床使用へ向けた研究には大きな論争が伴っている。イーライリリーは重症敗血症や敗血症性ショックの患者に対する使用を促進する積極的な広告宣伝活動を行い、2004年のSurviving Sepsis Campaignのガイドラインを後援した。しかし2012年のコクランレビューでは、生存率は改善されず出血リスクを増大させるため使用は推奨されないとされた。2011年10月、成人を対象とした治験で高い死亡率がみられたためザイグリスは市場から撤退した。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ガバペンチン(英: Gabapentin)は、GABA誘導体の抗てんかん薬である。日本では商品名ガバペンで抗てんかん薬として流通している。プロドラッグであるガバペンチン エナカルビル(商品名:レグナイト)はむずむず脚症候群の治療薬として販売される。 ガバペンの適応は、他の抗てんかん薬の効果が認められない際の補助薬である。レグナイトの適応は、慎重に国際的な診断基準に従い、中等度から高度の他が原因でないむずむず脚症候群である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ドキセピン(Doxepin)は、三環式化合物の1つで、大うつ病性障害、不安障害、慢性蕁麻疹、睡眠障害などの治療に用いられる薬剤である。蕁麻疹への抗ヒスタミン薬の代替としての使用は勧められない。睡眠障害への使用には軽度から中程度の効果がある。アトピー性皮膚炎や慢性苔癬によるかゆみにはクリームとして使用される。 一般的な副作用には、眠気、口渇、便秘、吐き気、かすみ目などが挙げられる。重大な副作用には、25歳未満の自殺、躁病、尿閉などが挙げられる。投与量が急速に減少すると、離脱症候群を発症する場合がある。妊娠中や授乳中の人への投与は一般的に推奨されない。 ドキセピンは三環系抗うつ薬(TCA)である。うつ病の治療にどのように作用するかは明らかではないが、ノルアドレナリンのレベル高めると共にヒスタミン、アセチルコリン、セロトニンを阻害する効果がある。 ドキセピンは、1969年にアメリカ合衆国で医療薬に承認された。後発医薬品として入手可能である。2019年の英国の国民保健サービスにかかった1か月分のドキセピンは少なくとも100ポンドである。米国での卸売価格は1か月分で約23米ドルである。日本では販売されていない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1,4-ブタンジオール (1,4-Butanediol) は、プラスチックなどの原料となる有機化合物であり、鎮静作用ももっている。ブタンジオールの4つの異性体のうちの1つであり、無色で粘度の高い液体である。ポリブチレンテレフタラート (PBT) などプラスチックや繊維の原料となる。また体内でγ-ヒドロキシ酪酸 (GHB) へと代謝され、代謝されていない状態でも向精神作用があると考えられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1,5-アンヒドロ-D-グルシトールまたは1,5-アンヒドログルシトールまたは1,5-AGとは、天然に存在する単糖類の1種であり、ほとんど全ての食品中に含有されている。ヒトの血中にも一定量存在するが、尿糖が出現する(尿中にグルコースが排泄される)ような高血糖状態(およそ180mg/dL以上)では尿中に排泄されて血中1,5-AG濃度が減少する。1,5-AGはヘモグロビンA1c濃度が正常値またはそれに近い値を示す患者でも直近数日間の高血糖を検出できる。高血糖でない状態が2〜4週間継続すると、正常値に戻るとされる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エモジン(emodin、6-メチル-1,3,8-トリヒドロキシアントラキノン)は、天然に存在するアントラキノン類の1つである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ユビキノン(英: ubiquinone, 略号:UQ)とは、ミトコンドリア内膜や原核生物の細胞膜に存在する電子伝達体の1つであり、電子伝達系において呼吸鎖複合体IとIIIの電子の仲介を果たしている。ベンゾキノン(単にキノンでも良い)の誘導体であり、比較的長いイソプレン側鎖を持つので、その疎水性がゆえに膜中に保持されることとなる。酸化還元電位 (Eo') は+0.10V。ウシ心筋ミトコンドリア電子伝達系の構成成分として1957年に発見された。 広義には電子伝達体としての意味合いを持つが、狭義には酸化型のユビキノンのことをさす。還元型のユビキノンはユビキノールと呼称していることが多い。別名、補酵素Q、コエンザイムQ10(キューテン)、CoQ10、ユビデカレノンなど。かつてビタミンQと呼ばれたこともあるが、ヒト体内で合成することができるためビタミンではない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジゴキシン(Digoxin)とはジギタリス属植物である (Digitalis lanata) の葉から抽出される強心配糖体である。作用はジギトキシンより強く、作用時間が長い。ジゴキシンのアグリコン(非糖部)に相当する化合物はジゴキシゲニン (Digoxigenin) である。糖部である (Digitoxose) は呈色反応であるケラー–キリアニ反応に対して陽性を示す。商品名はジゴシン。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リビトール (Ribitol) またはアドニトール (adonitol) は、リボースの還元で生成される、結晶性のペントースアルコールである。天然にはに含まれるほか、グラム陽性菌の細胞壁、特に、タイコ酸中のとして含まれる。リボフラビンやフラビンモノヌクレオチドの化学構造にもなっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1-デカノール(1-Decanol)は、10個の炭素原子からなる直鎖状の脂肪族アルコールで、分子式はC10H21OHである。無色で粘性のある液体で、水に溶けず、強い匂いを持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ステアリン酸(ステアリンさん、英: stearic acid、数値表現 18:0)とは動物、植物の脂肪に豊富な飽和脂肪酸(高級脂肪酸)の一種である。IUPAC組織名はオクタデカン酸 (octadecanoic acid) である。融点 69.9 °C、沸点 376 °C(分解)、比重約0.9である。 遊離酸は常温で白色の低融点の固体であり、ろうそくの原料にもなる。 親水基 (COOH) と疎水基 (C17H35) を併せ持ち、分子が細長いので、水面/油面において1分子の厚みをもつ膜(単分子膜またはラングミュア膜、L膜)を形成する性質がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    吉草酸(きっそうさん、valeric acid)は、不快な臭いのする分子量の少ないカルボン酸の一種。IUPAC系統名ではペンタン酸 (pentanoic acid) となる。足の裏の臭いはこの異性体であるイソ吉草酸が原因である。閾値が非常に低いことから、悪臭防止法の規制対象となっている。消防法による第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    前立腺特異抗原(ぜんりつせんとくいこうげん prostate specific antigen : PSA、PA)は、前立腺から分泌され精液中に含まれている酵素(生体物質)で抗原性を持つ物質。前立腺癌の腫瘍マーカーとして使用されるが、前立腺炎や前立腺肥大などでも上昇する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    GLP-1とは、グルカゴン様ペプチド-1 (Glucagon-like peptide-1) の略。1983年に同定された消化管ホルモンで、消化管に入った炭水化物を認識して消化管粘膜上皮から分泌される。分泌されたGLP-1は膵臓のランゲルハンス島β細胞に作用して、インスリン分泌を介した血糖降下作用を示す。 中枢神経では、レプチン受容体を発現する延髄ニューロンにおいてGLP-1の産生が知られており、このニューロンが脳内における唯一のGLP-1産生ニューロンといわれている。さらにニューロンだけでなく、脳内免疫細胞であるミクログリアにおいてもGLP-1が産生されることから、脳内免疫に関与することが示唆されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    モリブデン(英: molybdenum [ˌmɒlɪbˈdiːnəm, məˈlɪbdɨnəm]、独: Molybdän [molʏpˈdɛːn])は、原子番号42の元素。元素記号は Mo。クロム族元素の1つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ドコサン (docosane) は炭化水素の1種で、炭素が22連なった直鎖アルカン。分子式は C22H46。分子量は310.6006 ± 0.0208。融点は44.4 °C。沸点は368.65 °C。臨界点は991 (kPa)、512,45 °C。構造異性体の種類は2278638。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クェルセタゲチン(クエルセタゲチン、quercetagetin)は、フラボノイドの一種であるフラボノールの一つ。ホシクサ属 (Eriocaulon) 植物に含まれている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    TCEP (トリス(2-カルボキシエチル)ホスフィン、英語: tris(2-carboxyethyl)phosphine)は還元剤の一種。TCEPは通常、分子量286.65 g/molの塩酸塩(TCEP-HCl)として生化学や分子生物学の実験に利用される。 同様の目的で利用されるジチオトレイトール(DTT)や2-メルカプトエタノール(βME、2ME)に比べて高価であるが、強い還元力、高い安定性、高い選択性、不可逆還元性、高い親水性、弱い不快臭などの性質によって有用な還元剤として知られる 。その強い還元力や高い安定性に着目して、バッファーや水に溶かした溶液としてだけではなくアガロースに固定して利用することで、還元された物質とTCEPの分離工程を飛ばすことができる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ロフェコキシブ(Rofecoxib)は、COX-2選択性の非ステロイド性抗炎症薬(NSAID)である。変形性関節症、関節リウマチ、若年性関節リウマチ、急性疼痛、片頭痛、月経困難症などの治療薬として、メルク社により販売されていた。ロフェコキシブは、米国では1999年5月に米国食品医薬品局(FDA)により承認され、「Vioxx」、「Ceoxx」、「Ceeoxx」のブランド名で、錠剤や経口懸濁液が販売されていた。日本では承認されていなかった。 ロフェコキシブは、関節炎をはじめとする慢性および急性の疼痛を伴う疾患の治療に携わる医師の間で広く使用されていた。全世界で8,000万人以上の患者がロフェコキシブを処方されていた。 2004年9月、メルク社はロフェコキシブを自主的に市場から撤退させた。その理由は、長期にわたる大量の使用により心臓発作や脳卒中のリスクが高まることが懸念されたためである。メルク社は、ロフェコキシブのリスクに関する情報を5年以上にわたって医師や患者に開示せず、その結果、88,000〜140,000件の重篤な心臓病が発生したとされており、この薬を撤回せざるを得なくなった。ロフェコキシブは、これまでに市場から撤退した医薬品の中で、最も広く使用されている医薬品の一つであった。撤退前の1年間で、メルク社はバイオックスから25億米ドルの売上高を得ていた。 2005年に米国FDAは、大規模な長期対照臨床試験のデータから、COX-2選択薬(ロフェコキシブを含む)が非選択的なNSAIDよりも重篤な心血管イベントのリスクが高いことを明確に証明していないと結論づけるメモを発表した。FDAは2015年にこの立場を強化し、「入手可能なデータは、COX-2選択性NSAIDと非選択性NSAIDの重篤な有害心血管イベントのリスクが増加するという用量および期間に依存するクラス効果を支持している」と述べた。 2017年11月、マサチューセッツ州に本拠を置くTremeau Pharmaceuticals社は、血友病性関節症(HA)の治療薬としてロフェコキシブ(TRM-201)を市場に戻す計画を発表した。Tremeau社は、TRM-201について、FDAがHAの治療薬としてオーファン指定をしたこと、また、開発計画についてFDAからフィードバックを受けたことを発表した。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-ピロン-2,6-ジカルボン酸(英語、4-pyrone-2,6-dicarboxylic acid)は、有機酸の1種である。クサノオウ(Chelidonium majus)にも含有されることから、ケリドン酸(英語、Chelidonic acid)とも言う。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    mTOR(日本ではエムトールと呼ばれることもあるが、正しくはエムトアまたはエムトーである)は哺乳類などの動物で細胞内シグナル伝達に関与するタンパク質キナーゼ(セリン・スレオニンキナーゼ)の一種。酵母を用いたスクリーニングでラパマイシンの標的分子として発見されたため、TOR (target of rapamycin)つまり「ラパマイシン標的タンパク質」の略として命名された(TOR1、TOR2の2種類がある)。後に哺乳類のホモログが見出され、同定した研究者らによりFRAP1、RAFT1などと命名されたが、一般にはmTOR (mammalian TOR:哺乳類のTOR)との呼称が普及した。その後、様々な生物種でTORホモログが広く同定されたのを受け、HUGO遺伝子命名法委員会 (HGNC)は2009年に本遺伝子の公式名をMTOR(mechanistic target of rapamycin)に決定した。なお、HGNCによる公式名称では、Mはmechanistic(物理的、機械的、機構的)の略であり、当初一般的であったmammalian(哺乳類の)ではない。 mTORは、複数のタンパク質による複合体(complex)を形成し、複合体はmTORCと呼ばれる。インスリンや他の成長因子、栄養・エネルギー状態、酸化還元状態など細胞内外の環境情報を統合し、転写、翻訳等を通じて、それらに応じた細胞のサイズ、分裂、生存などの調節に中心的な役割を果たすと考えられている。インスリンやアミノ酸が豊富に存在するとmTORは活性化され、リボソームにおけるmRNAの翻訳を促進しタンパク質合成を増加させるとともに、オートファジーを阻害しタンパク質の分解を抑制する。 酵母そのものも栄養状態等に応じた調節機能を果たすが、詳細な作用機序は異なる。さらに多くの真核生物でホモログが知られるが、これらの作用機序も必ずしも同じではない。語源となっているラパマイシンは、まずタンパク質に結合し、このタンパク質複合体がmTORに結合してこれを阻害する。mTORは2種類の分子複合体(ラパマイシン感受性および非感受性)を形成し、それぞれにおいて触媒(mTORキナーゼ)サブユニットとして働く。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    テストステロン(Testosterone)は、アンドロゲンに属するステロイドホルモンで、男性における主要な性ホルモンであり、蛋白同化ステロイドでもある。男性において、テストステロンは、精巣や前立腺などの男性生殖組織の発達に重要な役割を果たすと共に、筋肉や骨量の増加、体毛の成長などの二次性徴を促進する。さらに、男女共にテストステロンは、気分や行動などの健康や幸福、骨粗鬆症の予防にも関与している。男性のテストステロンが不足すると、虚弱体質や骨量減少などの異常が生じる可能性がある。 テストステロンは、3位と17位にそれぞれケト基とヒドロキシ基を持つアンドロスタンクラスのステロイドである。テストステロンは、コレステロールからいくつかの段階を経て生合成され、アンドロゲン受容体に結合して活性化することで作用を発揮する。肝臓で不活性な代謝物に変換される。人間をはじめとするほとんどの脊椎動物では、テストステロンは主に男性の精巣から分泌され、女性の卵巣からも分泌される。成人男性のテストステロン濃度は、成人女性の約7 - 8倍である。 男性のテストステロンの代謝はより顕著であるため、1日の分泌量は女性の約20倍になる。 また、女性の方がホルモンに対する感受性が高いと言われている。 テストステロンは、天然ホルモンとしての役割に加えて、医薬品として男性の性腺機能低下症や女性の乳癌の治療に使用されている。男性は加齢と共にテストステロンのレベルが低下するため、この不足分を補うためにテストステロンが高齢の男性に使用されることがある。また、スポーツ選手などの体格やパフォーマンスを向上させるために違法に使用されることもある。世界アンチ・ドーピング機構は、テストステロンをS1アナボリックエージェント物質として「いかなる場合も禁止」している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デオキシウリジン (英:Deoxyuridine)は、化合物であり、ヌクレオシドである。デオキシウリジンは、化学構造がウリジンに似ているが2’-ヒドロキシ基はない。 イドクスウリジンやトリフルリジンは、抗ウイルス剤として利用されているデオキシウリジンの誘導体である。これらは、DNA複製の一環として組み込まれるほど類似しているが、ウラシル部分に(それぞれヨウ素基とCF3基の)置換基を有して、塩基対の形成を妨げている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アジスロマイシン (INN:azithromycin、略号:AZM) とは、15員環マクロライド系抗菌薬である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジフェンヒドラミン(Diphenhydramine)は、H1受容体拮抗薬のうち、古い第一世代抗ヒスタミン薬に属する化合物のひとつである。製品名はレスタミンコーワ錠(興和創薬販売)。 末梢および中枢のヒスタミンと競合的に拮抗することにより炎症、気道分泌の抑制、鎮静作用がある。また、イヌやネコでは乗り物酔いの予防薬として使用される。主に風邪薬や鼻炎薬など、抗ヒスタミン薬として用いられるが、顕著な眠気の副作用が問題視されており、1980年代には第二世代抗ヒスタミン薬が登場している。そして、あまり知られていない副作用として脱毛がある。 一方、その副作用を逆に利用したのがドリエルなどの睡眠改善薬である。不眠症への使用や長期連用は推奨されない。ジフェンヒドラミンの鎮静作用にする耐性は、非常に早く形成される。不適切に用いられた場合、弱い精神依存に繋がることがある。睡眠のステージ3や4あるいはREM睡眠を変化させることはない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    臭化水銀(II)(しゅうかすいぎん、Mercury(II) bromide)は、組成式が HgBr2 の臭素と水銀の化合物である。臭化第二水銀(しゅうかだいにすいぎん)とも表記される。塩化水銀(II)と同様に猛毒である。 結晶は白色、もしくは黄色を帯びた白色で、融点は 236 ℃。水に難溶 (0.55 g/100mL, 20 ℃)、熱エタノールに可溶。CAS登録番号は [7789-47-1]。水銀と臭素を混ぜると生成する。光に弱く、遮光下で保存される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エチレンジアミン (ethylenediamine) は、有機化合物で、化学合成に広く使われている、アンモニア臭のある無色の液体。略号は EDA。水、アルコールと任意に混ざりあう。分子量 60.11。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    増殖細胞核抗原(ぞうしょくさいぼうかくこうげん、英: proliferating cell nuclear antigen、略称: PCNA)は、真核生物細胞においての因子として作用するDNAクランプであり、DNA複製に必要不可欠である。PCNAはホモ三量体を形成し、DNAを取り囲むことでプロセシビティを高め、DNA複製、DNA修復、クロマチンリモデリング、エピジェネティクスに関与するタンパク質をリクルートするための足場として機能する。 多くのタンパク質は、PIP(PCNA-interacting peptide)ボックスとAPIM(AlkB homologue 2 PCNA interacting motif)という2つのPCNA相互作用モチーフを介してPCNAと相互作用する。PIPボックスを介してPCNAに結合するタンパク質が主にDNA複製に関与しているのに対し、APIMを介してPCNAに結合するタンパク質は主に遺伝毒性ストレスとの関係で重要である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ニラパリブ(Niraparib、開発コード:MK-4827)は、上皮性卵巣癌、卵管癌、原発性腹膜癌の治療に用いられる経口抗癌剤である。日本では卵巣癌の治療・維持療法で用いられる。類薬のオラパリブはBRCA遺伝子変異陽性の患者に使用されるが、ニラパリブはBRCA遺伝子変異の有無に拘らず使用可能である。 米国と欧州で2017年に、日本で2020年に承認された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    CD45またはPTPRC(英: protein tyrosine phosphatase receptor type C)は、ヒトではPTPRC遺伝子にコードされる酵素である。当初は、白血球共通抗原(leukocyte common antigen、LCA)と呼ばれていた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    S-メチルシステイン(S-Methylcysteine)は、化学式CH3SCH2CH(NH2)CO2Hのアミノ酸である。システインのS-メチル化誘導体である。多くの食用の野菜を含む幅広い種類の植物で見られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フペルジンA (ヒューペルジンA、Huperzine A) はトウゲシバ (Huperzia serrata) に含まれるアルカロイド。フペルジンAはアセチルコリンエステラーゼ阻害剤で、同種類に分類されるものには他に認知症の治療薬のドネペジルやリバスチグミン、ガランタミンがある。 フペルジンAを含む植物は、中国において古くから腫れ、発熱、血液疾患の治療に用いられてきた。中国における臨床試験において、アルツハイマー病の治療に効果があることが示されていた。続いて医薬品としての治験が行われたが中止されている。アメリカ合衆国では、フペルジンAは記憶支援のためのサプリメント(栄養補助食品)として販売されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フルフラール(furfural)は芳香族アルデヒドの一種で、右図のような構造を持つ有機化合物。IUPAC命名法では 2-フランカルボキシアルデヒド (2-furancarboxaldehyde) などと表される。2位がホルミル基一つで置換されたフランに相当する。純粋なものは無色油状の液体で、アーモンドに似た香気を持つが、空気に触れると急激に黄色く変色する。 トウモロコシの穂軸、燕麦などの籾殻、サトウキビの絞りかす、ふすまなどの農産物の副産物やおがくずなどを原料にして製造される。英語名はラテン語でふすまを意味する furfur を語源としている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    白血病阻止因子(はっけつびょうそしいんし、Leukemia inhibitory factor、略称: LIF)は、細胞の分化を阻害することによって細胞の成長に影響を与えるIL-6ファミリーのサイトカインの一種である。LIF量が低下した時に、細胞は分化する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロマジン塩酸塩(英: Promazine hydrochloride)は、フェノチアジン系のトランキライザー(精神安定剤)であり、より効果の強い薬(クロルプロマジン)の出現などの理由により、日本国内では、市販されていない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルタチオンジスルフィドレダクターゼ(glutathione-disulfide reductase)は、グルタチオン代謝酵素の一つで、次の化学反応を触媒する酸化還元酵素である。 2 グルタチオン + NADP+ グルタチオンジスルフィド + NADPH + H+ 反応式の通り、この酵素の基質はグルタチオンとNADP+、生成物はグルタチオンジスルフィドとNADPHとH+である。補因子としてFADを用いる。 組織名はglutathione:NADP+ oxidoreductaseで、別名にglutathione reductase、glutathione reductase (NADPH)、NADPH-glutathione reductase、GSH reductase、GSSG reductase、NADPH-GSSG reductase、glutathione S-reductase、NADPH:oxidized-glutathione oxidoreductaseがある。 なお、グルタチオンジスルフィドレダクターゼは、グルタチオンレダクターゼとも呼ばれており、グルタチオン-アスコルビン酸回路を構成している酵素の一つである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エルロチニブ (Erlotinib) はゲフィチニブと同様、上皮成長因子受容体 (EGFR) のチロシンキナーゼを選択的に阻害する内服抗がん剤。分子標的治療薬のひとつである。非小細胞肺癌患者に対し、延命効果を示した。 IUPAC命名法ではN-(3-ethynylphenyl)-6,7- bis(2-methoxyethoxy)-4-quinazolinamineと表記され、分子量は393.436 g/mol。エルロチニブ製剤中にはエルロチニブ塩酸塩として存在し、分子量は429.90 g/molである。 エルロチニブ製剤は切除不能又は再発した非小細胞肺癌および膵臓癌に対する治療薬として用いられる。製造元は米国OSIファーマシューティカルズ (OSI Pharmaceuticals Inc.)、販売元は米国ジェネンテック社 (Genentech, Inc.) で、商品名は「タルセバ® (Tarceva®)」。タルセバ®錠は3種類の用量の剤形があり、エルロチニブとして一錠25 mg、100 mg、150 mg(エルロチニブ塩酸塩としてそれぞれ27.3 mg、109.3 mg、163.9 mg)を含有する。 2004年11月19日米国食品医薬品局 (FDA) は非小細胞肺癌に対する治療薬として本薬剤を認可し、さらに2005年11月2日膵臓癌の治療薬としてゲムシタビンとの併用療法において承認した。日本では中外製薬が2006年4月14日厚生労働省に販売製造承認申請を行い、2007年10月19日に承認された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イソプロピル-β-チオガラクトピラノシド(Isopropyl β-D-1-thiogalactopyranoside)は、分子生物学で使用される試薬の一つである。通常は略してIPTGと呼ばれる。 この化合物はアロラクトースの類似体として用いられ、ラクトースオペロンの転写を誘導する。アロラクトースとは異なり、生体内では硫黄原子の部分で分解されないため、ラクトースオペロンは常に誘導された状態となる。 IPTGはラクトースリプレッサーに結合してその働きを阻害し、ラクトースを分解するβ-ガラクトシダーゼの発現を誘導する。クローニングにおいては、lacZ遺伝子の部分に目的の遺伝子が導入され、IPTGはその遺伝子の発現を誘導することになる。 ラクトースオペロンを用いた組み換えタンパク質の発現ではさまざまな調節機構が関与しているが、IPTGは100μMから1.5mMの濃度範囲で優れた誘導物質となり得る。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ニンテダニブ(Nintedanib)は特発性肺線維症(IPF)の治療薬として用いられるインドリノン誘導体である。海外では非小細胞肺癌の治療薬として使用されている地域もある。商品名は「オフェブ」で、ベーリンガーインゲルハイムが開発した。開発コードBIBF 1120。 小分子のの一つで、血管内皮細胞増殖因子受容体(VEGFR)、線維芽細胞増殖因子受容体(FGFR)、血小板由来成長因子受容体(PDGFR)に作用する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    核内受容体コアクチベーター1 (NCOA1: nuclear receptor coactivator 1)は、いくつかの核内受容体相互作用ドメインと固有のヒストンアセチルトランスフェラーゼ活性を含む転写共調節タンパク質である。 NCOA1は、リガンドで活性化される核内受容体によってDNAプロモーター部位に動員される。次に、NCOA1はヒストンをアシル化し、下流のDNAを転写しやすくする。したがって、NCOA1はDNA発現の上方調節において核内受容体を援助する。 NCOA1は、ステロイド受容体コアクチベーター1(SRC-1: steroid receptor coactivator-1)と同一である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    α-フェトプロテイン(アルファ・フェトプロテイン、α-fetoprotein; AFP)とは、胎児の肝細胞や卵黄嚢で産生される糖蛋白である。分子量はおよそ70,000。ヒトでは4番染色体にafp遺伝子によりコードされている。健康な成人の体内ではほとんど産生されない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    第XII因子(だい12いんし、英: factor XII)またはハーゲマン因子(Hageman factor)は、血漿のタンパク質である。セリンプロテアーゼ(またはセリンエンドペプチダーゼ)に分類される酵素第XIIa因子の酵素前駆体である。ヒトでは、第XII因子はF12遺伝子にコードされる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アンジオテンシン変換酵素(アンジオテンシンへんかんこうそ、英: angiotensin-converting enzyme、ACE、EC 3.4.15.1)とはであるアンジオテンシンI (英: angiotensin I、Ang I) を、生理活性を持つアンジオテンシンII (英: angiotensin II、Ang II) に変換する反応を触媒する酵素(プロテアーゼ)である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-アセトアミド安息香酸(4-acetamidobenzoic acid)とは、その名の通り、4-アミノ安息香酸と酢酸とが脱水縮合してアミドを形成した有機化合物である。この化合物には、アセドベン(Acedoben)と言う慣用名も与えられており、この名で呼ばれる場合もあるものの、本稿では以降、4-アセトアミド安息香酸という呼称を用いる。CAS登録番号は、556-08-1。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェルビナク(Felbinac)とは抗炎症、鎮痛作用を持ったフェニル酢酸系の非ステロイド性抗炎症薬である。皮膚から痛む患部に浸透し、酵素の1つシクロオキシゲナーゼに直接働きかけることで、炎症を引き起こすプロスタグランジンという物質の生合成を抑制する作用がある。肩・腰・関節痛などの炎症と痛みを抑える効果がある。CAS登録番号は [5728-52-9]。 * 化学名:4-Biphenylylacetic acid * 分子式:C14H12O2 * 分子量:212.24 * 融点 :163〜166℃

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピセアタンノール(Piceatannol)は、スチルベノイド及びフェノール化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロポフォール(英語: Propofol)は、全身麻酔や鎮静に用いられる化合物である。商品名ディプリバン(Diprivan)でアストラゼネカから発売され、後発医薬品も出ている。 最も作用時間が短く調節性に優れる静脈麻酔薬の一つであり、プロポフォールの登場後、全静脈麻酔や標的制御注入(TCI)など、麻酔科学上の多くの革新がもたらされた。 医薬品医療機器等法における劇薬、習慣性医薬品、処方箋医薬品である。 2009年、マイケル・ジャクソンの死につながった原因薬剤のひとつ。日本では2014年の東京女子医大事件にて子供が死亡した原因薬剤となった(後述)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    n-ブチルアミン(ノルマルブチルアミン、英: n-Butylamine)は、化学式C4H11Nで表されるアミンの一種。医薬品製造の中間体や有機合成化学の原料として用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    β-カテニン(英: β-catenin、catenin beta-1)は、ヒトではCTNNB1遺伝子にコードされるタンパク質である。 β-カテニンは2つの機能を持つタンパク質で、細胞接着と遺伝子転写の調節や調整に関与している。ショウジョウバエDrosophilaの相同タンパク質はArmadilloと呼ばれる。β-カテニンはカドヘリンタンパク質複合体のサブユニットの1つであり、Wntシグナル経路の細胞内シグナル伝達因子としても機能する。カテニンタンパク質ファミリーに属し、γ-カテニン(プラコグロビン)と相同である。β-カテニンは多くの組織で広く発現している。心筋では、β-カテニンは介在板構造のアドヘレンスジャンクションに局在する。介在板は隣接する心筋細胞間の電気的・機械的共役に重要である。 β-カテニンの変異と過剰発現は、肝細胞がん、大腸がん、肺がん、乳がん、卵巣がん、子宮体がんなど多くのがんに関係している。β-カテニンの局在や発現レベルの変化は、拡張型心筋症などさまざまな形態の心疾患と関係している。β-カテニンはβ-カテニン分解複合体(β-catenin destruction complex)よって調節と分解が行われる。特にがん抑制因子であるAPC(adenomatous polyposis coli)タンパク質による調節が重要であり、APCをコードするAPC遺伝子の変異は家族性大腸腺腫症に由来する大腸がんと強く関係している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-ビニルグアイアコールは化学式C9H10O2で表されるフェノール類の一種である。4-VGとも略記される。フェノールの2位にメトキシ基、4位にビニル基を持つ構造から、2-メトキシ-4-ビニルフェノールとも呼ばれる。グアイアコールには「グアイヤコール」「グアヤコール」の表記ゆれが見られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インターロイキン-8 (英:Interleukin-8, IL-8)またはケモカイン(C-X-Cモチーフ)リガンド8 (CXCL8)は、マクロファージ、上皮細胞、気道平滑筋細胞および血管内皮細胞が産生するケモカインでインターロイキンの1つである。血管内皮細胞は格納用小胞であるWeibel-Palade小体にIL-8を保管している。ヒトのIL-8タンパク質 はCXCL8遺伝子(別名:IL8 遺伝子)にコードされている。IL-8は最初にアミノ酸鎖長99個の前駆体ペプチドとして作られた後、活性を持つ幾つかのIL-8アイソフォームへと切断される。 培養環境のマクロファージが分泌するIL-8の主要な形態は、72個のアミノ酸からなるペプチドである。 IL-8が結合可能な受容体は膜表面に多数存在する。最も研究されているタイプはGタンパク質共役受容体であるCXCR1とCXCR2である。 IL-8との親和性と発現は2つの受容体で異なる(CXCR1>CXCR2)。IL-8の分泌は自然免疫系の応答における生化学反応の連鎖を通して重要なメディエーターである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フィルゴチニブ(Filgotinib)は関節リウマチ(RA)の治療に使用されるヤヌスキナーゼ(JAK)阻害薬・分子標的治療薬。 ベルギー・オランダのバイオテクノロジー企業GalapagosNVによって開発された。 最も一般的な副作用には、吐き気(気分が悪くなる)、上気道感染症(鼻と喉の感染症)、尿路感染症、めまいなど。 フィルゴチニブは、2020年9月に欧州連合(EU)と日本の両方で医療用医薬品として承認された。製品名はジセレカ(Jyseleca) 。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヨウ化水銀(II)(ヨウかすいぎん(II)、Mercury(II) iodide)は、化学式が HgI2 の無機化合物である。赤橙色の結晶で、水にはほとんど溶けない。 熱、光、臭化物、塩化物、アンモニア、アルカリ、シアン化物、銅塩、鉛塩、ヨードホルムおよび過酸化水素とは避けて保存する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    FOXP2(ふぉっくすぴーつー、英: FOXP2)は文法能力 (grammatical competence) を含むとの関連が示唆されている遺伝子である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ラミブジン(Lamivudine、2',3'-ジデオキシ-3'-チアシチジン、略称:3TC)は、抗レトロウイルス効果を持つ逆転写酵素阻害薬(NRTI)の一つである。商品名は、B型肝炎治療薬としてゼフィックス、HIV感染症/AIDS治療薬としてエピビル。 WHO必須医薬品モデル・リストに収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サバイビン (survivin) は、inhibition of apoptosis (IAP) familyに属するヒト遺伝子である。 サバイビンタンパクは、カスパーゼの活性化を阻害しアポトーシスを抑制する。サバイビンは癌細胞で高度に発現しているのに対し、完全に分化した細胞ではほぼ発現が見られない。癌細胞において、サバイビンの機能を破壊すると増殖が止まりアポトーシスが誘導されることから、サバイビンは癌治療において格好のターゲットである。サバイビンは、細胞周期においても高度に制御され、G2/M期でのみ発現する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ギンコトキシン(英語: Ginkgotoxin)とは、4'-O-メチルピリドキシンとも呼ばれ、イチョウによって生合成される神経毒である。ギンコトキシンは、ビタミンB6(ピリドキシン)と構造的に拮抗する抗ビタミンで、てんかん発作を誘発し得る。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エイコサペンタエン酸(エイコサペンタエンさん、eicosapentaenoic acid、EPA)またはイコサペンタエン酸(icosapentaenoic acid)は、ω-3脂肪酸の一つ。必須脂肪酸ごく稀にチムノドン酸(timnodonic acid)とも呼ばれる。5つのシス型二重結合をもつ20炭素のカルボン酸である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メチルイソシアニド (英: methyl isocyanide) は、イソシアニドの一つ。アセトニトリルの異性体であるが、その反応性は大きく異なる。主に5原子複素環の合成に用いられる。 他のイソシアニド類と同様に強烈な悪臭を有する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スピロノラクトン (spironolactone) はカリウム保持性利尿薬()のひとつ。その名の通りスピロ環構造とラクトン環構造を併せ持つ。受容体とアルドステロンとの結合に拮抗することによりK+保持性の利尿作用を示す。主に心不全、肝硬変性腹水、高血圧治療薬としてフロセミドやクロロチアジドと併用される。特に、アルドステロン分泌が異常亢進する原発性アルドステロン症では第一選択の治療薬である。副作用として高K+性アシドーシス、女性化乳房、皮膚発疹などが存在する。 女性ホルモン作用を併せ持つため、高血圧治療薬としては歓迎されないものであるが、これを応用して男性型の脱毛症治療薬として利用する方法がしばしば散見される。また、アルドステロン受容体により特異的に結合することで女性ホルモン作用が軽減された、第二世代のアルドステロン拮抗薬(エプレレノン)も発売されている。 さらに、鉱質コルチコイド受容体拮抗作用を持つため、外用ステロイド剤の副作用(皮膚萎縮)低減に応用できる可能性が示唆されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ソラフェニブ(英: Sorafenib)は、腎癌・肝細胞癌に対して用いられる分子標的治療薬の一つ。バイエル薬品とが開発し、ソラフェニブのトシル酸塩が製剤化されている。2009年9月現在、腎細胞癌に対して80ヵ国以上、肝細胞癌に対して70ヵ国以上で承認されている。商品名はネクサバール®(Nexavar)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    3-メチルブタン酸(3-メチルブタンさん、3-methylbutanoic acid)またはイソ吉草酸(イソきっそうさん、isovaleric acid)は、多くの植物、精油に見られる天然の脂肪酸である。水にはやや溶け、多くの有機溶媒にはよく溶ける無色透明、揮発性の液体である。 イソ吉草酸自体にはチーズもしくは汗、足、加齢による口臭のにおいのような不快感を伴う刺激臭があるが、そのエステルは快い芳香を持つため香料として広く使われている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スワインソニン(英: swainsonine)はインドリジジンアルカロイドの一種。ゴルジαIIの強力な阻害剤、免疫調整剤であり、化学療法の候補薬である。Locoweed(Loco: 狂う + Weed: 草)の主要な毒成分であり、また特に北アメリカにおいて畜産業に深刻な経済的損失を与える原因となっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    モリブドプテリン(Molybdopterin)は補因子の一つ。モリブデンを含むほとんどの酵素とタングステンを含む全ての酵素に見られる。MPT、ピラノプテリンジチオラートとも呼ばれる。ややこしいが、モリブドプテリンは金属原子に結合するプテリン配位子に与えられた名称であり、それ自体はモリブデンを含まない。モリブデンと結合した完全な化合物は通常と呼ばれる。 モリブドプテリンの骨格であるは、プテリン環とピラン環が縮環した複素環式化合物である。ピラン環には金属に配位する2個のチオールに加えアルキルリン酸基が付加しているが、アルキルリン酸基はアルキルリン酸ヌクレオチドになる場合もある。モリブドプテリンを含む酵素にはキサンチンオキシダーゼ、DMSOレダクターゼ、亜硫酸オキシダーゼ、硝酸レダクターゼ等がある。 モリブドプテリンを用いないモリブデン含有酵素はニトロゲナーゼのみである。この酵素はモリブドプテリンとはかなり異なる鉄硫黄中心の一部としてモリブデンを含む。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カプリン酸(カプリンさん、capric acid)は化学式 CH3(CH2)8C(=O)OH で表される、脂肪酸の一種である。IUPAC系統名はデカン酸 (decanoic acid) である。 有機合成や、香料、潤滑剤、グリース、ゴム、染料、合成繊維、食品添加物、医薬品など各種化学工業で用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ダウノルビシン(daunorubicin)はダウノマイシン(daunomycin)とも呼ばれる、がんの治療に化学療法薬として用いられる薬剤である。具体的には急性骨髄性白血病(AML)、急性リンパ性白血病(ALL)、慢性骨髄性白血病(CML)、カポジ肉腫の治療に用いられる。投与法は急速静脈注射または点滴静脈注射である。リポソーム化製剤である(liposomal daunorubicin)も存在する。 主な副作用は、脱毛、嘔吐、 、口内の炎症などである。その他の重度の副作用には心血管疾患、投与患部の壊死 などがあげられる。妊娠中のヒトへの投与は胎児に害を与えるそれがある。ダウノルビシンは、アントラサイクリンに属する薬剤である。作用機序はII型トポイソメラーゼの働きを阻害することで効果がある。 ダウノルビシンは1970年4月に日本で承認を取得した。米国で薬剤として承認されたのは1979年である。世界保健機関の必須医薬品リストに掲載されており、最も効果的で安全な医療制度に必要とされる医薬品である。開発途上国での卸売価格は20mgのバイアル1本につき約$5.79~$37.18米ドルである。英国の国民保健サービスにかかる費用は20mgバイアル1本につき約£55.00ポンドである。もとはストレプトマイセス属 から分離された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジメチルアリル二リン酸(ジメチルアリルにリンさん、DMADP)は、テルペンおよびテルペノイド(イソプレノイド)生合成に必要な2つの前駆物質(イソプレン単位)のうちの一つである。もう一つは異性体であるイソペンテニル二リン酸(IPP)。メバロン酸経路および非メバロン酸経路の最終生成物の一つとして、IPPとともに合成される。ジメチルアリルピロリン酸(DMAPP)ともいう。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジメチルアミン (dimethylamine) は、最も基本的な第二級アミンである。アンモニアに似た刺激臭を持つ気体で、水またはアルコールに良く溶ける。水溶液は強アルカリ性を示す。 試薬としては加圧液体化したボンベ、濃度33-50%程度の水溶液、塩酸塩として販売されている。 工業的には、アルミナまたはシリカを酸触媒とした脱水反応で、アンモニアとメタノールとから製造される。その際にはメチルアミン、トリメチルアミンも副生するので分離して製品とする。 工業的には N,N-ジメチルホルムアミドの製造原料が主な用途でありその他にも医薬、農薬、合成樹脂、界面活性剤、ロケット燃料など化成品の原料として利用される。または触媒、ゴムの加硫化剤などにも利用される。 毒物及び劇物取締法により劇物に指定されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    Ro-318220は、に分類されるプロテインキナーゼC (PKC) 阻害剤の一つである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ベンゾフラン (Benzofuran) は、ベンゼン環とフラン環が一辺を共有して縮合した複素環式化合物のこと。異性体として 1-ベンゾフラン と 2-ベンゾフラン(別名: イソベンゾフラン)があるが、多くの複雑な化学種の構造の母核として現れるのは 1-ベンゾフランである。例えばプソラレン (Psoralen) はいくつかの植物で産生される 1-ベンゾフラン誘導体である。1-ベンゾフランは別名として クマロン (coumarone) 、2,3-ベンゾフラン とも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ストレプトマイシン(Streptomycin)は、細菌感染症の治療に用いられる抗生物質であり、結核、マイコバクテリウムアビウムコンプレックス感染症、心内膜炎、ブルセラ症、バークホルデリア感染症、ペスト、野兎病、鼠咬症などに適用がある。 最初に発見されたアミノグリコシド類であり、結核の治療に用いられた最初の抗生物質である。略してストマイともいう。消化管からの吸収がよくないため経口投与できず、筋肉内注射(筋注)もしくは静脈注射となる。真正細菌(バクテリア)型リボソームのみに選択的で、それ以外の生物、例えば古細菌には効果がない。古細菌に近い祖先をもつと考えられる真核生物本体のリボソームも阻害を受けず、真正細菌のみを選択的に殺すことができる。ただし、ミトコンドリアリボソームは進化的に真正細菌に起源があり、ある程度影響を受ける。これが副作用の原因の一つになると考えられている。 1943年にによって、放線菌の一種 Streptomyces griseus の代謝物から発見された。WHO必須医薬品モデル・リストに掲載され、WHOの「人間医学において非常に重要な抗菌剤」リストに掲載されている。 また農薬でもあり、硫酸塩および誘導体のが殺菌剤として発売されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スフィンゴシン-1-リン酸(英:Sphingosine-1-phosphate、S1P)とは生体膜を構成するスフィンゴ脂質の代謝産物であり、リゾホスファチジン酸(LPA)と並ぶの一種である。これらは酵素により膜から切り出されて遊離した後に細胞膜上に発現しているGタンパク質共役受容体に結合することによって細胞遊走などを引き起こす生理活性物質でもある。S1Pは(SphK)と呼ばれる酵素によって産生され、S1Pの濃度は炎症状態(気管支喘息、自己免疫疾患など)において上昇する。化学式C18H38NO5P、分子量379.47。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ゲラニオール (geraniol) はゼラニウムから発見された直鎖モノテルペノイドの一種。主にローズオイル、パルマローザ油、シトロネラ油に含まれる。また、ゼラニウムやレモン、いくつかの精油にも含まれている。無色または薄い黄色の液体で、水には溶けないが多くの有機溶媒には溶ける。バラに似た芳香を持ち、広く香水に使われている。また、モモ、ラズベリー、グレープフルーツ、リンゴ、プラム、ライム、オレンジ、レモン、スイカ、パイナップル、ブルーベリーのような芳香としても用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イミキモド(Imiquimod)は、性器疣贅や日光角化症などの治療に用いられるである。1997年に米国で承認を取得した後、1998年に欧州で、2007年に日本で承認された。2015年現在、米国や欧州ではイミキモドにはジェネリック医薬品があり、世界中で多くのブランドで販売されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    8-アザグアニン(8-Azaguanine)は防黴作用や抗腫瘍作用を持つプリン類縁物質である。その生理活性について広く研究されていた。抗腫瘍活性は急性白血病の治療に応用された事がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アフィジコリンまたはアフィディコリン(英語:Aphidicolin)は、セファロスポラム・アフィジコラ(Cephalosporum aphidicola)という菌類から単離された抗菌性、抗ウイルス性と抗有糸分裂を持つ四環系ジテルペンである。アフィジコリンは真核生物のDNA複製を可逆的に阻害する働きがある。アフィジコリンは、細胞周期をS期初期で止め、また真核細胞や、ワクチニアウイルスやヘルペスウイルスなどのウイルスにあるDNAポリメラーゼA,Dに対して特異的に働き、HeLa細胞においてはアポトーシス誘導剤として働く。自然界ではの二次代謝産物として知られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    がん原遺伝子チロシンプロテインキナーゼSrc(Proto-oncogene tyrosine-protein kinase Src)は、ヒトにおいてSRC遺伝子にコードされる非受容体型チロシンキナーゼタンパク質である。がん原遺伝子c-Srcあるいは単にc-Srcとしても知られている。このタンパク質は他のタンパク質の特定のチロシン残基をリン酸化する。c-Srcチロシンキナーゼの活性の上昇は、他のシグナルを促進することによってがんの進行と関連していることが示唆されている。c-SrcはSH2ドメイン、SH3ドメイン、チロシンキナーゼドメインを含んでいる。 c-Srcは、細胞性Srcキナーゼ(cellular Src kinase)の略であり、C末端Srcキナーゼ(C-terminal Src kinase、CSK)と混同してはならない。CSKはc-SrcのC末端をリン酸化し、Srcを不活性にする酵素である。c-Srcは非受容体型チロシンキナーゼ (nRTKs)の中で広く研究されている酵素である。 Src(サルコーマ〔sarcoma; 肉腫〕の短縮形であるため、サークと発音される)は、J・マイケル・ビショップとハロルド・ヴァーマスによって発見されたチロシンキナーゼをコードするがん原遺伝子である。この業績によってビショップとヴァーマスは1989年のノーベル生理学・医学賞を受賞した。c-Srcはと呼ばれるのファミリーに属する。 この遺伝子は、ラウス肉腫ウイルスの遺伝子に似ている。このがん遺伝子は胚発生および細胞成長を制御する役割を果たしている。この遺伝子にコードされているタンパク質はチロシンキナーゼであり、その活性はによるリン酸化によって阻害される。この遺伝子の変異は、結腸癌の悪性化に関与している。この遺伝子関して同じタンパク質をコードする2種類の転写変異体が見付かっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ペンタデカン酸(ペンタデカンさん、pentadecanoic acid)またはペンタデシル酸(ペンタデシルさん、pentadecylic acid)は、飽和脂肪酸の一種。 牛乳中の乳脂肪が主な食事供給源であり、乳脂肪摂取の指標として使用されている

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    レボチロキシン(Levothyroxine)またはL-チロキシンは、甲状腺ホルモンの1つであり、T4との略称を持つ。医薬品としては甲状腺機能低下症の治療に用いられたり、甲状腺癌の予防に用いられる事もある。不斉炭素を1つ持つ化合物であり、自然に存在するチロキシンと同じくL-型である。商品名チラーヂン。対掌体であるD-チロキシンは高コレステロール血症治療への応用が考えられた事があるが、心毒性のために開発中止となった。 WHO必須医薬品モデル・リストに収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デオキシアデノシン三リン酸(Deoxyadenosine triphosphate、dATP)は、ヌクレオシド三リン酸であり、DNA複製を行う細胞で用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    β-アラニン(β-alanine)とは、3-アミノプロパン酸(3-aminopropanoic acid)のことである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アリルアルコール (allyl alcohol) とは、有機化合物のアルコールの一種。IUPAC名は 2-プロペン-1-オール (2-propen-1-ol)。アリル化合物のひとつであり、安定な不飽和アルコールの中で最も単純な構造を持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    Zbtb7(ズィービーティービーセブン)は、がんの主スイッチとして働くとされる遺伝子。これを発見した研究チームのリーダーでニューヨークの(MSKCC)の遺伝学者博士は、ポケモン遺伝子(Zbtb7の旧称)が他のがん遺伝子がガンを引き起こす際に必要とされる事がユニークであると述べた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オラパリブ (Olaparib, AZD-2281, Ku-0059436) は、進行した卵巣癌への分子標的治療薬として、アストラゼネカの リムパーザ(Lynparza) が2014年12月に米国食品医薬品局(FDA)と欧州医薬品庁(EMA)から承認を得ている。日本でも2018年1月に「白金系抗悪性腫瘍剤感受性の再発卵巣癌における維持療法」を効能・効果として承認。2018年7月2日「がん化学療法歴のあるBRCA遺伝子変異陽性かつHER2陰性の手術不能又は再発乳癌」についても適応が承認された。 DNA修復に関与するを阻害するである。がん抑制遺伝子であるBRCA1やBRCA2に変異をもつがんは本剤に感受性が高く、BRCA1/2遺伝子に変異を有する卵巣癌、乳癌、前立腺癌、膵臓癌等の治療に用いられる。 400 mgを1日2回経口摂取する。1日の合計摂取量は800 mg。1週間分となる 50 mgカプセル112個入りボトル が $3,000 で販売されている。 選択的阻害剤の一種であり (英語版) と (英語版) への作用 IC50 はそれぞれ 5 nM と 1 nMである。400 mgを1日2回摂取した時の血中濃度は Cmax ss = 1.18-14.2 µg/mL、AUC0-12 = 6.48-154 µg.h/mL。 ヒト正常細胞においてもPARP阻害薬オラパリブは作用し、ゲノム不安定性を招き染色体異常が増加する。進行癌以外でPARP阻害薬を使用する場合は注意が必要。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    パラトルモン(parathormone)(パラソルモン)とは副甲状腺(上皮小体)から分泌される84アミノ酸から構成されるポリペプチドホルモンである。 副甲状腺ホルモン(parathyroid hormone, PTH)、上皮小体ホルモンとも呼ばれる。パラトルモンは、血液のカルシウムの濃度を増加させるように働き、逆に甲状腺から分泌されるカルシトニンはカルシウムを減少させるように働く。パラトルモンは、血中のカルシウム濃度を増加させるが、パラトルモン受容体(PTH受容体)は骨、腸、腎臓の3箇所の臓器に発現が見られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カルシトリオール(Calcitriol)は、1,25-ジヒドロキシコレカルシフェロール(1,25-dihydroxycholecalciferol)または1,25-ジヒドロキシビタミンD3(1,25-dihydroxyvitamin D3)とも呼ばれており、3つのアルコール基を持つホルモン活性を有する形の(1,25-(OH)2D3 または単に1,25(OH)2Dとも略称されている)ビタミンDである。 この物質は次の方法により血中のカルシウム(Ca2+)濃度を高める。 (1) 腸からカルシウムの吸収を高め血中濃度を高める。 (2) 腎臓の働きによりカルシウムの血中から尿への移動を抑制する。 (3) 骨から血中へカルシウムの放出を高める。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インスリン受容体 (インスリンじゅようたい、英: Insulin receptor、IR) は、インスリンとインスリン様成長因子によって活性化される膜貫通タンパク質受容体で、受容体型チロシンキナーゼのクラスに属する。代謝的観点では、インスリン受容体はヒトなどにおいて血糖値の恒常性の調節という重要な役割を果たし、機能の悪化によって糖尿病やがんを含む一連の臨床症状がもたらされる。インスリンのシグナルは、多くの細胞において血中にあるグルコースへのアクセスを制御する。インスリンの血中濃度が低下した時、特にインスリン感受性が高い場合には、体細胞は膜を越えて輸送する必要のない脂質にだけアクセスするようになる。このように、インスリンは脂肪の代謝においても主要な調節因子である。生化学的観点では、インスリン受容体は単一のINSR遺伝子によってコードされ、選択的スプライシングによってIR-AまたはIR-Bのアイソフォームが生じる。これらは翻訳後のタンパク質分解によってαとβのサブユニットへ切断される。これらのアイソフォームはホモ二量体またはヘテロ二量体化し、ジスルフィド結合で連結された約320 kDaの膜貫通インスリン受容体が形成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グアニジン (guanidine) は、有機化合物。強い塩基性を持つ結晶性の固体で、グアニンの分解によって得られる。またタンパク質の代謝によって生成し、尿中にも検出される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シグナル伝達兼転写活性化因子3(signal transducer and activator of transcription 3、STAT3)は、ヒトではSTAT3遺伝子にコードされる転写因子である。STATタンパク質ファミリーのメンバーである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フルオレセイン (fluorescein) は顕微鏡観察に用いられる蛍光色素の一種である。他にも色素レーザーの媒体、法医学や血清学における血痕の探索、用途などに広く利用されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グリココール酸(Glycocholic acid)は、脂肪を乳化することのできる透明な胆汁酸である。胆汁酸であるコール酸がグリシンと抱合したものである。哺乳類の胆汁酸で、ナトリウム塩に変化する場合もある。 ヒトの胆汁酸のうちの三分の二程度はこの物質である。生合成はコリルCoAとグリシンの反応である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ドキソルビシン(doxorubicin)は、抗悪性腫瘍剤(抗がん剤)の一種。1967年にイタリアのFarmitalia研究所のF. Arcamoneらにより、Streptomyces peucetius var. caesiusの培養濾液中から発見されたアントラサイクリン系の抗腫瘍性抗生物質である。アドリアマイシン (Adriamycin) ともいう。商品名はアドリアシン(製造販売:協和発酵工業→協和発酵キリン→現協和キリン)およびドキシル(ヤンセンファーマ製造販売)。DXRまたはADM(あるいはADR)という略号で表されることもある。世界保健機関 (WHO) の下部組織によるIARC発がん性リスク一覧のグループ2に属する。ヒトに対する発癌性の限られた証拠、動物実験での十分な証拠がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サッカロピン(Saccharopine)は、リシンの代謝中間体の一つ。少数の下等真菌、高等真菌およびユーグレナ藻に存在するα-アミノアジピン酸経路ではリシンの前駆体である。哺乳類と高等植物ではリシンの分解中間体の一つで、リシンとα-ケトグルタル酸の縮合反応で生成する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デキサメタゾン(英: Dexamethasone)は、ステロイド系抗炎症薬 (SAID) の一つである。炎症の原因に関係なく炎症反応・免疫反応を強力に抑制する。急性炎症、慢性炎症、自己免疫疾患、アレルギー性疾患などの際に使用される。内服薬の商品名デカドロン。ステロイド外用薬として使われ、日本での格付けで5段階中2-3のストロングとミディアムの医薬品がある。デキサメタゾンは1957年に発見された。WHO必須医薬品モデル・リストに収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェニル酢酸(―さくさん、Phenylacetic acid)は、酢酸のα水素の1つがフェニル基で置換された有機化合物の一種である。白色の固体で不快な匂いがする。メタンフェタミンやアンフェタミンの原料となるフェニルアセトンの違法な製造に使われるため、アメリカ合衆国では流通が規制されている。日本国でも、覚せい剤原料として覚醒剤取締法の対象物質であり、輸入、製造、販売、取扱い等には、厚生労働省の許可が必要である。また、その保管管理にも特別な設備が必要である。 フェニル酢酸はオーキシンとして、最初に果物の中から見つかった。しかしその作用はインドール-3-酢酸よりも弱い。 フェニル酢酸は濃度の薄い時は蜂蜜様の香りで、香水に使われる。またペニシリンGの製造にも用いられる。 屈折率は1.5025である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロトン酸(クロトンさん、crotonic acid)は、炭素数4のモノ不飽和脂肪酸のひとつ。C-2位にトランス型の二重結合を持つ。ハズ油の主成分で、名称もハズ属 Croton に因む。工業的にはクロトンアルデヒドの酸化によって合成する。 単体は白色の針状結晶で、酪酸様の臭気を有し、刺激性が強い。水及び多くの有機溶媒に溶ける。 同じ化学式で、シス型の二重結合をもつ幾何異性体はイソクロトン酸 (isocrotonic acid) と呼ばれる。イソクロトン酸は沸点171.9 ℃の油状液体で、蒸留によって単離できる安定な物質であるが、熱や光、酸などによってクロトン酸へと異性化する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エライジン酸(エライジンさん、Elaidic acid)は、水素添加された植物油に現れる主要なトランス脂肪酸で、ヤギとウシの乳に少量(脂肪酸の約0.1%)と肉にも存在する。エライジン酸のシス型異性体はオレイン酸である。 エライジン酸は(CETP)を活性化することにより、低比重リポタンパク(VLDL)を増やし、高比重リポタンパク(HDL)コレステロールを減らす。この作用によって、虚血性心疾患などの病気のリスクを高める可能性がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1-ノナノール(1-nonanol)は、化学式がCH3(CH2)8OHの直鎖脂肪族アルコールである。無色または淡黄色の液体でシトロネラ油に似た芳香を持つ。消防法に定める第4類危険物 第3石油類に該当する。 ノナノールはオレンジの油で天然に生成する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    バラシクロビル (Valaciclovir) は、ヘルペスウイルス感染症治療薬(抗ウイルス薬)の1種である。グラクソ・スミスクラインから商品名バルトレックスが販売されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    鉱質コルチコイド受容体(Mineralocorticoid Receptor; MR)またはアルドステロン受容体(Aldosterone receptor)あるいはNR3C2(nuclear receptor subfamily 3, group C, member 2)は、ヒトでは染色体4q31.1-31.2に位置するNR3C2 遺伝子によってコードされるタンパク質である。 MRは、鉱質コルチコイドと糖質コルチコイドに等しく親和性を持つ受容体である。MRは核内受容体ファミリーに属し、リガンドが細胞内に拡散し、受容体と相互作用することで、核内での特定の遺伝子発現に影響を与えるシグナル伝達が行われる。ある組織や臓器が糖質コルチコイドよりも鉱質コルチコイドに選択的に反応するのは、鉱質コルチコイドに反応する細胞がを発現しているからである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1-ヘキサノール (1-hexanol) は有機化合物のアルコールの一種で、炭素6個の直鎖を持つ、無色の液体。水にはわずかに溶け、ジエチルエーテルやエタノールなどの有機溶媒には易溶。ヒドロキシ基の位置が異なる位置異性体として 2-ヘキサノール、3-ヘキサノールがある。芝を刈ったばかりのときの匂いは 1-ヘキサノールによるといわれる。香料として工業的に用いられる。消防法による第4類危険物 第2石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェニルエタノールアミン-N-メチルトランスフェラーゼ(phenylethanolamine N-methyltransferase, PNMT)は、副腎髄質で見られる酵素で、ノルアドレナリンをアドレナリンに変換する。 PNMTは副腎皮質で作られるコルチゾールによって正の影響を受ける。 S-アデノシルメチオニン(SAM)が必須の補因子になっている。 PNMTはSAMからメチル基をノルアドレナリンに転移し、アドレナリンに変換する。また、この酵素はをアンフェタミンの異性体であるに変換する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホモゲンチジン酸(ホモゲンチジンさん、Homogentisic acid)は、フェニルアラニンおよびチロシンの代謝中間体の1つである。一般名は、2,5-ジヒドロキシフェニル酢酸(2,5-dihydroxyphenylacetic acid)。名称は、「ゲンチジン酸(2,5-ジヒドロキシ安息香酸)より炭素が1つ多い酸」という意味である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウリジン二リン酸ガラクトース(ウリジンにリンさんガラクトース、Uridine diphosphate galactose)は、ヌクレオチド糖の一種である。UDP-ガラクトースとも言う。多糖の生合成の中間体であり、また糖類の代謝の際にも活性型の中間体として重要な役割を果たす。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デオキシシチジン三リン酸(Deoxycytidine triphosphate、dCTP)は、ヌクレオシド三リン酸であり、ポリメラーゼ連鎖反応等のDNA複製の際に用いられる。この過程は、以下の化学反応式で表すことができる。 (DNA)n + dCTP ↔ (DNA)n-C + PPi つまり、dCTPはピロリン酸を切り離し、dCMPがDNA鎖の3'末端に取り込まれる。続くピロリン酸の加水分解により、反応の平衡が右側に寄り、ヌクレオチドが取り込まれてDNA鎖が成長する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ニコチンアミド(nicotinamide: Nam)は、ニコチン酸(ナイアシン/ビタミンB3)のアミドである。ニコチンアミドは水溶性ビタミンで、ビタミンB群の一つである。ナイアシンアミド(niacinamide)、ニコチン酸アミド(nicotinic acid amide)とも呼ばれる。欠乏症でペラグラとなる。外用薬の成分としてニキビ(尋常性痤瘡)の治療や、美容目的で化粧品に配合される。日本で医薬部外品の化粧品としてシワ改善の有効成分(リンクルナイアシン)、美白の有効成分(ニコチン酸アミド)として承認されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    共役リノール酸(きょうやくリノールさん、英: conjugated linoleic acid、略称 CLA)とはリノール酸の異性体のうち、炭素-炭素間の二重結合が2個共役した形の(-C=C-C=C- のように連続している)部分構造を持つものの総称である。いずれも化学式は C18H32O2。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウリジン二リン酸グルクロン酸(ウリジンにリンさんグルクロンさん、英: Uridine diphosphate glucuronic acid、UDP-グルクロン酸、英: UDP glucuronic acid)は、ウリジン二リン酸 (UDP) にグルクロン酸がグリコシド結合したもの。糖ヌクレオチドの一種で、多糖の合成に使われる。また、アスコルビン酸の生合成の中間生成物である(サル目とテンジクネズミを除く)。NAD+を補因子としてUDP-グルコース-6-デヒドロゲナーゼ(EC 1.1.1.22)によってUDP-グルコースから作られる。この物質は、グルクロン酸転移酵素反応におけるグルクロノシル基(グルクロン酸)の供給元である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ゲムシタビン(英語: Gemcitabine、略号:GEM)とは、抗癌剤として用いられる含フッ素ヌクレオシドの一種である。シチジンのリボース環の2'位がフッ素2個で置換された構造を持つ。 イーライリリー・アンド・カンパニーが開発し、商品名ジェムザール(Gemzar)で販売している。ジェムザールの性状は白色から微黄白色の結晶性の粉末である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オルニチン (ornithine、略称 Orn) は、アミノ酸の1種で、有害なアンモニアを尿素に変換する尿素回路を構成する物質の1つである。アルギニンの分解によって生成する。分子式は C5H12N2O2、IUPAC命名法では 2,5-ジアミノペンタン酸(2,5-diaminopentanoic acid)と表される。分子量は 132.16。2番炭素がキラル中心であるため、1対の鏡像異性体を持つ。これらのうち天然型は L体(S体)で、CAS登録番号は [70-26-8] である。なお、D体(R体)のCAS登録番号は 348-66-3、ラセミ体(S体とR体の等量混合物)のCAS登録番号は [616-07-9] である。 オルニチンを人工タンパク質の材料とする研究が行われたが、オルニチンがラクタム化(環状化)してしまい以降のペプチド結合が作れなくなってしまったため、失敗に終わった。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トルフェナム酸(Tolfenamic acid)とは、フェナム酸系の非ステロイド性抗炎症薬の1種であり、2-{(3-クロロ-2-メチルフェニル)-アミノ}-安息香酸のことである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    CTLA-4(細胞傷害性Tリンパ球抗原4, cytotoxic T-lymphocyte-associated protein 4 別名:CD152)は免疫チェックポイント・タンパク質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ブリグチニブまたはブリガチニブ(Brigatinib)は、非小細胞肺癌の治療に用いられる分子標的医薬品である。未分化リンパ腫キナーゼ(ALK)や上皮成長因子受容体(EGFR)などを阻害する。 セツキシマブやパニツムマブ等の抗EGFR抗体と併用することで、EGFR C797S変異によるオシメルチニブ耐性を克服することができる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エナント酸(エナントさん、enanthic acid)は炭素数7のカルボン酸で、末端にカルボキシル基を持つ。IUPAC名はヘプタン酸 (heptanoic acid) である。腐敗物のような悪臭を持つ油状液体で、腐った油のにおいの成分の一部である。水には溶けにくいが、エタノールやエーテルには良く溶ける。消防法による第4類危険物 第3石油類に該当する。 香料として使われるヘプタン酸エチルなどのエステルの合成に用いられる。銀杏では酪酸と並ぶ腐臭の主成分である。 タバコの添加物のひとつでもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    肝細胞増殖因子(かんさいぼうぞうしょくいんし、HGF英: Hepatocyte growth factorまたはSF英: scatter factor)は、分子量が約9万の一本鎖のタンパク質。 HGF activator (HGFA)と呼ばれるセリンプロテアーゼにより分子量約6万のα鎖と約3万のβ鎖に切断されると生理活性を発現する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ドルゾラミド(Dorzolamide)は、炭酸脱水酵素の阻害剤である。眼で房水産生を低下させる。点眼薬として用いると、開放隅角緑内障およびで上昇する眼圧を低下させる。商品名トルソプト。これはドラッグデザインによって設計された最初の薬品(1995年市場発表)である。β遮断薬であるチモロールとの合剤がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヘキサフルオロ-2-プロパノール(Hexafluoro-2-propanol)は、化学式(CF3)2CHOHで表される有機化合物であり、アルコールの一種である。ヘキサフルオロイソプロパノールとも呼ばれ、しばしばHFIPと略される。溶媒及び合成中間体として主に利用されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デュロキノン(英語:Duroquinone)はC4(CH3)4O2で表される有機化合物である。1,4-ベンゾキノンの、炭素環に結合している4つの水素原子をメチル基に置き換えた化合物である。分子の中心に当たるC10O2の構造はそれぞれ2つのC=OとC=Cの平面にある。 この化合物はデュレン (1,2,4,5-テトラメチルベンゼン) のニトロ化(英語版)と、その後のジアミンの還元と酸化によって合成される。 デュロキノンの誘導体の一つである有機鉄化合物 (η2,η2-C4(CH3)4O2)Fe(CO)3はペンタカルボニル鉄の存在下で2-ブチンをすると得られる。 また、この分子は"ナノブレイン"(nano brain)の材料としても知られている

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミノサイクリン(英: Minocycline)は、広域スペクトル性のテトラサイクリン系抗生物質であり、静菌性の抗菌薬に分類される。テトラサイクリン系としては脂溶性が高く、組織移行性が良好で生体内半減期も長い。経口摂取時の生物学的利用能が100%に近い。動物用医薬品としても使用される。 アメリカ食品医薬品局は、2008年に甲状腺疾患、小児自己免疫疾患の重篤な副作用との関連が見出している。コクラン共同計画もある種の自己免疫疾患の発症リスクの上昇を見出した。 天然に存在する抗生物質ではなく、1966年にアメリカ合衆国のによって天然テトラサイクリンから半合成された物質。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルコース-1-リン酸(グルコース-1-リンさん、glucose-1-phosphate、G1P)は、1位炭素上のヒドロキシ基がリン酸化されたグルコース誘導体である。コリエステル(cori ester)とも言う。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オキシプリノール(英:Oxipurinol、Oxypurinol)は、アロプリノールの六員環が酸化された構造をしている。尿酸値を下げ痛風を予防するアロプリノールの代謝産物として知られ、キサンチンオキシダーゼの阻害剤として機能する。なお、キサンチンオキシダーゼの基質であるキサンチンと類似した構造を持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロテアーゼ活性化受容体1(プロテアーゼかっせいかじゅようたい1、英: protease-activated receptor 1、略称: PAR1)は、ヒトではF2R遺伝子によってコードされるタンパク質である。トロンビン(凝固第II因子)受容体という語がこのタンパク質を指して用いられることもある。PAR1はGタンパク質共役受容体であり、4種類のプロテアーゼ活性化受容体の1つである。血小板と内皮細胞で高度に発現しており、血液凝固と炎症の連携を媒介する重要な役割を果たし、炎症性肺疾患や線維性肺疾患の発症に重要である。また、トロンビンまたは活性化プロテインCとの相互作用を介して、血管内皮のバリアの完全性の破壊と維持にそれぞれ関与している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アルシン(英語: arsine)とは、化学式が AsH3 と表される、ヒ素と水素の化合物である。水素化ヒ素(英語: arsenic hydride)や、ヒ化水素 (英語: hydrogen arsenide) とも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チオレドキシン相互作用タンパク質(英: Thioredoxin-interacting protein, TXNIP)は、ヒト TXNIP 遺伝子にコードされているタンパク質である。 チオレドキシン結合タンパク質2(英: Thioredoxin-binding protein 2, TBP-2)やビタミンD3上向き制御タンパク質1(英: Vitamin D3 up-regulated protein 1, VDUP-1)としても知られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メナジオン(Menadione)は合成ビタミンKであり、サプリメントとして用いられていた。1,4-ナフトキノンの2位をメチル基で置換した構造である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホモセリン(homoserine)は、化学式HO2CCH(NH2)CH2CH2OHのα-アミノ酸の一種。イソスレオニン(isothreonine)とも呼ばれる。L-ホモセリンはDNAにコードされた一般的なアミノ酸の一つではない。タンパク質を構成するアミノ酸であるセリンとは、メチレン基が一つ挿入されている違いがる。ホモセリンあるいはそのラクトン型は、臭化シアンを用いたメチオニンの分解によるペプチドの切断の生成物である。 ホモセリンは、3種の必須アミノ酸(メチオニン、スレオニン、イソロイシン)の生合成中間体である。ホモセリンは、アスパラギン酸セミアルデヒドを介したアスパラギン酸の2段階の還元によって形成される 。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    FMR1(fragile X mental retardation 1)は、FMRP(fragile X mental retardation protein)と呼ばれるタンパク質をコードするヒトの遺伝子である。FMRPは脳に最も一般的に存在し、正常なと女性の生殖機能に必要不可欠である。この遺伝子の変異は脆弱X症候群、知的障害、、自閉症、パーキンソン病、発達遅滞や他の認知障害を引き起こす。FMR1の(premutation)と関係した広範囲にわたる臨床表現型は、世界中で200万人以上に影響を与えている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    7-メチルグアノシン(7-Methylguanosine, m7G)は、修飾されたプリンヌクレオシドで、グアノシンので、尿中に見られる場合、いくつかのタイプの癌のバイオマーカーとなる可能性がある。伝令RNA中では、7-メチルグアノシンは、を保護する5'キャップの役割を持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フタラジン(Phthalazine)は、化学式C8H6N2の複素環式化合物である。キノキサリン、シンノリン、キナゾリン等の他のナフチリジンとは異性体の関係にある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヴォン・ヴィレブランド因子(ヴォン・ヴィレブランドいんし、von Willebrand factor; vWF)とは、血中にある凝固因子のひとつ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トルメティン(Tolmetin)とは、酢酸系に分類される非ステロイド性抗炎症薬(NSAIDs)の1種である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロトリマゾール(Clotrimazole)はヒトおよび動物に用いるアゾール系真菌感染症治療薬の一つである。カンジダ症、白癬、癜風の治療に用いられる。商品名エンペシド。 WHO必須医薬品モデル・リストに収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロピルアミンは、アルキルアミンの一種。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    α1-アンチトリプシン(英: α1-antitrypsin、略称: A1AT、α1AT、A1A、AAT)は、セルピンスーパーファミリーに属するタンパク質であり、プロテアーゼインヒビターである。ヒトでは、SERPINA1遺伝子によってコードされる。古い文献においてはserum trypsin inhibitor(STI)とも呼ばれており、こうした名称は初期の研究においてとしての能力が顕著な特徴であったためである。実際にはトリプシンだけでなくさまざまなプロテアーゼを阻害するため、α1-プロテアーゼインヒビター(A1PI)、α1-アンチプロテアーゼ(A1AP)などと呼ばれることもある。酵素阻害剤として、炎症細胞の酵素、特に好中球エラスターゼから組織を保護する。血中の参考基準値は0.9–2.3 g/Lであるが、急性炎症に伴って濃度は何倍にも上昇する。 血中のA1ATの量が不十分、または機能的欠陥のあるA1ATが存在している場合(1-アンチトリプシン欠乏症など)、好中球エラスターゼはエラスチンを過剰に分解し、その結果、肺の弾性が低下して成人では慢性閉塞性肺疾患などの呼吸器合併症が引き起こされる。正常なA1ATは肝臓で産生されて体循環に加わるが、欠陥のあるA1ATは肝臓に蓄積し、成人と小児の双方で肝硬変の原因となる。 炎症細胞から放出される好中球エラスターゼへの結合に加えて、A1ATは細胞表面に局在するエラスターゼにも結合する。この場合エラスターゼは酵素としては作用せず、その代わりに細胞が移動するようシグナルを伝達する。A1ATは肝臓に加えて、骨髄のリンパ球と単球、小腸のパネート細胞でも産生される。 A1ATは内在性のプロテアーゼインヒビターであるが、医薬品としても利用される。医薬品としてはヒトの血液から精製されており、α1-proteinase inhibitor (human) の一般名とさまざまな商標名(Aralast NP、Glassia、Prolastin、Prolastin-C、Zemairaなど)で販売されている。組換え型のA1ATも利用可能であるが、現在では主に医学研究で利用されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トラニラスト(Tranilast)は、内服または点眼でアレルギー性疾患の治療に用いられるほか、内服薬はケロイドや肥厚性瘢痕の治療にも用いられる。肥満細胞や炎症細胞からの様々な化学伝達物質の遊離を抑制してI型アレルギー反応を抑えるほか、TGF-β1の遊離抑制作用等で線維芽細胞のコラーゲン合成を抑制し、ケロイド形成を抑えることができる。ナンテン配糖体(ナンジノシド)の研究を基にキッセイ薬品工業が開発した。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    PARP1(poly [ADP-ribose] polymerase 1)は、ヒトではPARP1遺伝子にコードされる酵素である。NAD+ ADP-ribosyltransferase 1、poly[ADP-ribose] synthase 1などの名称でも知られる。 ファミリーの酵素の中で最も豊富に存在し、このファミリーに利用されるNAD+のうち90%をPARP1が占める。PARP1は大部分が細胞核に存在するが、一部は細胞質基質に存在することも報告されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グアニン (guanine) は分子式が C5H5N5O の、核酸を構成する5種類の主な塩基のうちのひとつ。プリン塩基である。分子量は 151.13。グアニンから誘導されるヌクレオシドはグアノシン。 右図の構造に対応するIUPAC名は 2-アミノ-1,9-ジヒドロ-6H-プリン-6-オン (2-amino-1,9-dihydro-6H-purin-6-one) であるが、ほかに互変異性として、1,7-、3,7-、3,9-ジヒドロ体をとることができる。 DNA、あるいはRNAの二重鎖構造の中ではシトシンと3本の水素結合を介して塩基対を作っている。 サケ科やタチウオ、サンマ等の魚類の銀白色部位を構成する主要成分でもある。名称の由来は、海鳥の糞の堆積物(グアノ)中から発見されたことによる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エルゴタミン(ergotamine)は、エルゴペプチンの一種であり、アルカロイドの麦角ファミリーに属する。構造的ならびに生物化学的にエルゴリンと近縁関係にある。いくつかの神経伝達物質と構造的類似性があり、血管収縮薬としての生理活性を有する。 エルゴタミンは(時にはカフェインとの組み合わせで)急性偏頭痛の治療薬として使用されている。麦角菌の医学的利用は16世紀に分娩を誘導するために始まったが、用量の不確実さから利用は推奨されなかった。エルゴタミンは分娩後出血を抑えるために使用されている。エルゴタミンは、1918年にSandoz製薬のによって麦角菌から初めて単離され、1921年にGynergenとして販売された。 麻薬及び向精神薬取締法により麻薬向精神薬原料に指定されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アシクロビル (英語: Aciclovir) は、ウイルス感染症の治療薬である。単純ヘルペスウイルスや水痘・帯状疱疹ウイルスに使われる。グラクソ・スミスクラインよりゾビラックス、一般薬(第一類医薬品)としてヘルペシア(大正製薬)、等後発医薬品も多数。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キヌレン酸 (キヌレンさん、KYNA) は、アミノ酸であるL-トリプトファンの代謝経路であるキヌレニン経路においてL-キヌレニンから生成される代謝物のひとつ。キヌレン酸は1853年にドイツの化学者ユストゥス・フォン・リービッヒにより犬の尿から発見され、その名称はこの「犬(kyn:ギリシャ語)+尿(urine)」にちなんで名付けられた。 キヌレン酸は神経作用を有することが示されており、抗興奮毒(antiexcitotoxic)および抗痙攣(anticonvalsant)作用、あるいは興奮性のアミノ酸受容体へのアンタゴニストとして働く。このため、いくつかの重要な神経生理・神経病理過程に影響を及ぼす可能性があり、いくつかの神経生物学的疾患における治療での使用が検討されている。逆に言えば、キヌレン酸の増加はいくつかの病的状態と結びついている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チミジン (Thymidine)は化学物質の一つで、正確にはピリミジンデオキシヌクレオシドに属する。チミジンはDNAヌクレオシド(記号 dT ), でありDNAの二重鎖ではデオキシアデノシン(dA)と対を形成する。細胞生物学的には細胞周期のG1期/S期初期に同期するために使用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    第X因子(だいじゅういんし、英: factor X)とは、血液凝固カスケードを構成する酵素(EC 3.4.21.6)の1つである。セリンプロテアーゼの1種であり、PA clan (英語)に含まれる。Stuart–Prower因子と呼ばれることもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウラニルイオン (英: uranyl ion) は、化学式が UO22+ と表されるウランのオキシカチオンで、ウランの酸化数は+6である。ウランと酸素の間に多重結合性があることを示す短い U-O 結合をもち、直線形構造をとる。4つまたはそれ以上のエカトリアル配位子がウラニルイオンに結合する。特に酸素ドナー原子をもつ配位子と多くの錯体を形成する。ウラニルイオンの錯体は、鉱石からのウランの抽出、そして核燃料再処理において重要である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    テルミサルタン(英: telmisartan)とは、主に高血圧の治療に使用されるアンジオテンシンII受容体拮抗薬の1つである。ベーリンガー・インゲルハイムが創薬し、日本ではアステラス製薬からミカルディスの商品名で市販されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ガランタミン(Galantamine)は、アセチルコリンエステラーゼ阻害薬のひとつであり、軽-中度のアルツハイマー病や様々な記憶障害の治療に用いられる。商品名レミニール。特に脳血管障害を原因とするものに有効。Galanthus 属-スノードロップ(Galanthus caucasicus、Galanthus woronowii )や他のヒガンバナ科植物(Narcissus 属スイセン, Leucojum 属-スノーフレーク、Lycoris 属-ヒガンバナ)の球根や花から得られるアルカロイドである。人工的に合成することもできる。 現代医学での利用は1951年に始まり、ソ連の薬学者MashkovskyとKruglikova-Lvovaによって行われた。この2人によってガランタミンのアセチルコリンエステラーゼ(AChE)阻害作用が証明された。最初の工業生産は1959年、ブルガリアのPaskov(Nivalin, Sopharma)によって、東欧で伝統的に用いられていた植物を用いて始められた。これは民族植物学的創薬の実例である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スキサメトニウム(英:suxamethonium)とは筋弛緩薬の1つ。四級アンモニウム化合物の一つで、医薬品としては塩化物の塩化スキサメトニウム(Suxamethonium chloride)として市販されている。サクシニルコリン(Succinylcholine)の名でも知られる。ツボクラリンの構造をヒントに開発された。悪性高熱症のリスクはあるものの、現存の筋弛緩薬では効果発現時間が最短であり、迅速導入に適する。 日本での商品名はサクシンだったが、名称取り違えによる本薬品の誤投薬事故があったため(後述)、事故後の2009年にスキサメトニウムと改められた。海外ではアネクチン(Anectine)、クエリシン(Quelicin)の商品名で市販されている。また、日本では他にレラキシンという商品名でも販売されている。 2022年11月28日、現在の製造方法では日本薬局方に則っていないことが判明しており、一方、改善が容易ではなく新規製造が出来ない状況と日本麻酔科学会よりアナウンスされた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シチジン二リン酸(シチジンにリンさん、英: Cytidine diphosphate, CDP)は、シチジンヌクレオシドのピロリン酸エステルである。すなわち、CDPはピロリン酸基、五炭糖のリボースそして核酸塩基のシトシンから構成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    TLR4(Toll様受容体4、英:Toll-like receptor 4)は病原体に特徴的な分子を認識するToll様受容体の1つで、グラム陰性菌の外膜の成分であるリポ多糖(LPS)やグラム陽性菌のペプチドグリカン層にあるリポテイコ酸をリガンドとして認識する受容体である。通常の免疫反応に関わる一方で、リガンドが多すぎる場合には細菌性ショック(敗血症)を起こしうる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-アミノ安息香酸(4-アミノあんそくこうさん、4-aminobenzoic acid)は芳香族カルボン酸かつアミンの一種である有機化合物である。パラアミノ安息香酸、PABAとも呼ばれる。葉酸の前駆体として生体内で合成されるほか、日焼け止めとしても用いられる。 PABAはある種の真正細菌に必須の栄養素であり、ビタミンBxと呼ばれたこともあった。しかしヒトにとっては必須栄養素ではないことが明らかとなっており、現在ではビタミンに分類されない。 PABAは真菌の酵素()によって葉酸へと変換されるが、ヒトはこの酵素を欠いている。サルファ薬はPABAに構造が類似しており、この酵素を阻害するため真菌選択的に抗菌作用を示す。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ファルネシル二リン酸(英: Farnesyl diphosphate)またはファルネシルピロリン酸 (Farnesyl pyrophosphate, FPP) とは、炭素数15の直鎖イソプレノイド。テルペノイド生合成経路の中間体である。セスキテルペノイドの前駆物質でもある。 ユビキノンの合成に電子伝達系の一部として用いられ、またスクアレン、の前駆体となる、ゲラニルゲラニル二リン酸の前駆体となる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ドセタキセル(docetaxel、略称:DTX、TXT)は、タキサン系の抗がん剤の一つである。重合した微小管に結合して細胞のする。商品名はタキソテール (taxotere、サノフィ社)。 先行して開発されたパクリタキセル(商品名:タキソール、taxol)と名称が非常に似ていて、作用機序も同じだが、抗腫瘍効果や溶解性の点で改良がなされており、重篤な副作用の発症率が低いという報告がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アミオダロン(Amiodarone)とは、Vaughan-Williams分類でⅢ群に分類される抗不整脈薬である。商品名アンカロン、サノフィ製造販売。作用機序は複雑であり他の抗不整脈薬が無効でも効果が期待できる一方で、重篤な副作用を惹起する危険性を持った医薬品である。 アミオダロンの塩酸塩が錠剤および注射剤として製剤化され、医薬品として承認を得ている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コハク酸セミアルデヒド(succinic semialdehyde)は、γ-アミノ酪酸 (GABA) の代謝産物であり、GABAからにより生成される。さらにコハク酸セミアルデヒドデヒドロゲナーゼにより酸化されてコハク酸となり、TCAサイクルへ入る。IUPAC名は4-オキソブタン酸。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルタルアルデヒド (glutaraldehyde) は、有機化合物で、アルデヒドの一種。グルタールアルデヒドとも呼ばれる。IUPAC命名法では 1,5-ペンタンジアール (1,5-Pentanedial)。無色またはわずかに薄い黄色の液体で、特異な刺激臭がある。生物標本の固定液、また殺菌剤として使われる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-クマロイルCoA (4-Coumaroyl CoA) は、CoAの類縁体であり、p-クマル酸(4-ヒドロキシ桂皮酸)とCoAがチオエステル結合 (R-CO-S-R') した構造をもつ。脂肪酸やカルコンなどの生合成に深く関わっている。分子式は C30H42N7O18P3S、分子量913.67 g/mol、CAS登録番号は [119785-99-8]。 生合成は4-クマロイルCoAリガーゼ (4-Coumarate CoA Ligase, EC 6.2.1.12) が触媒し、以下の反応式で表される。 ATP + p-クマル酸 + CoA → AMP + ピロリン酸 + 4-クマロイルCoA 反応には補因子としてMg2+が要求される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒドロキノン (hydroquinone) は、二価フェノールである。特に美容ではハイドロキノンと表記されることが多い。ヒドロキノンの名称はこの化合物がp-ベンゾキノンの還元によって得られたことから来ている。写真の現像に用いられる。美容では皮膚の美白に利用されるが、頻繁な副作用について医学的な監督が必要で法的な規制や安全性の議論がある。ヒドロキシ基の位置が異なる異性体として、カテコール (1,2-体)、レゾルシノール (1,3-体)がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリコスタチンA(trichostatin A、略称: TSA)は、抗真菌抗生物質として働く有機化合物の一つである。1976年に、塩野義製薬の辻らによってStreptomyces hygroscopicusから単離された。 TSAはクラスIおよびIIほ乳類ヒストン脱アセチル化酵素 (HDAC) ファミリーに属する酵素を選択的に阻害するが、クラスIII HDAC(例: サーチュイン)は阻害しない。TSAは成長期の開始時期の間に真核生物の細胞周期を阻害する。TSAはヒストンからアセチル基を取り除く酵素の活性を妨げることによって遺伝子発現を変化させるのに使用することができ、ゆえにDNA転写因子がクロマチン内のDNA分子にアクセスする能力を変化させる。TSAは幅広いエピジェネティック活性スペクトルを有する(HDIあるいはHDACI)に属する。ゆえに、TSAは抗がん剤としての潜在能力を有する。提唱されている作用機序の一つは、TSAがアポトーシス関連遺伝子の発現を促進し、がん細胞の生存率を低下させ、がんの進行を遅らせるというものである。その他の作用機序としては、細胞の分化を誘導するため腫瘍中に見られる脱分化した細胞の一部を「成熟」させるHDIの活性が挙げられている。HDIはヒストンエフェクターではない分子にも複数の効果を有していることから、現在のところ抗がん機構は実際は不明である。 TSAはHDAC1、2、3、4、6、10をIC50 約20 nMで阻害する。 TSAはマウスN9およびラット初代ミクログリア細胞においてIL(インターロイキン)-1β/LPS(リポ多糖)/IFNγ(インターフェロンγ)によって誘導される一酸化窒素合成酵素 (NOS) 2の発現を抑制する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ABL1は、ヒトではに位置するABL1遺伝子(以前のシンボルはABL)にコードされるタンパク質である。哺乳類ゲノムに存在するホモログを表す場合にはc-Abl、ウイルスの場合にはv-Ablという表記が用いられることがあり、当初(Abelson murine leukemia virus)から単離されたことに由来する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    二リン酸(にリンさん、英: diphosphoric acid)は、化学式 H4P2O7 で表される無機化合物である。ピロリン酸(ピロリンさん、英: pyrophosphoric acid)とも呼ばれる。 リン酸を高温で脱水縮合することで生成する(接頭辞の pyro- は「熱・炎・高温」を意味する)。また、日本語において名称の類似するピロリンはアミンおよびイミンの一種であり、直接の関係はない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フィチン酸(フィチンさん、phytic acid)は生体物質の1種で、myo-イノシトールの六リン酸エステル。イノシトール6リン酸 (inositol hexaphosphate)、略称は IP6。種子など多くの植物組織に存在する主要なリンの貯蔵形態であり、特にフィチン(Phytin: フィチン酸のカルシウム・マグネシウム混合塩で、水不溶性)の形が多く存在する。キレート作用が強く、多くの金属イオンと強く結合する。抗酸化物質、防腐剤。ミオイノシトールと共通の作用を持つとされている。 1967年には、中東での亜鉛欠乏症への注目から、フィチン酸がミネラルの吸収を妨げるとされてきたが、1980年代以降の知見から、バランスのとれた食事がとれている場合には、そのような悪影響の証拠は発見できない。それ以降では、がんや結石の予防に寄与している可能性がある食品成分としても研究されており、2010年代の小規模な2つのランダム化比較試験では、乳がん治療の副作用を軽減している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1,3-プロパンジオール(1,3-propanediol)は、炭素数が3であるグリコールの一種。溶媒、不凍液、接着剤などに用いる。別名をトリメチレングリコール。PDO と略される。消防法に定める危険物#第4類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリデカン (tridecane) は有機化合物で、直鎖アルカンの一種。化学式は C13H28 と表される無色の液体。802種の構造異性体が存在する。他のアルカンと同様、極性をもたない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スニチニブ(Sunitinib)は、癌治療に用いられる医薬品である。スニチニブは、ATPを模倣した低分子のマルチターゲット受容体型チロシンキナーゼ(RTK)阻害薬で、2006年1月26日に腎細胞癌およびイマチニブ耐性胃腸間質腫瘍の治療薬としてFDAに承認された。スニチニブは、2つの異なる適応症で同時に承認された初めての抗癌剤であった。日本では2008年4月に「イマチニブ抵抗性の消化管間質腫瘍」および「根治切除不能または転移性の腎細胞癌」について、2012年8月に「膵神経内分泌腫瘍」について承認された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フォンダパリヌクス(Fondaparinux)は低分子ヘパリン(LMWH)様の抗凝固薬である。血小板第4因子への親和性がほとんどないのでLMWHよりもヘパリン起因性血小板減少症(HIT)の危険が少ないが、腎排泄型の薬剤であるので腎不全の患者には使えない。ヘパリンと異なり、効果は第Xa因子選択的である。とは異なり、アンチトロンビンIIIを介して間接的に第Xa因子を阻害する。商品名アリクストラ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イソニペコチン酸(isonipecotic acid)は、GABAA受容体部分作動薬の一つで、化学式がC6H11NO2の複素環式化合物である。 ピペリジンの4位にカルボキシル基が置換した構造のため4-ピペリジンカルボン酸とも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キノボース(quinovose)は、天然に存在するデオキシ糖の一種。6-デオキシグルコース。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カンプトテシン(Camptothecin、CPT)は細胞毒性のあるキノリンアルカロイドで、DNA酵素のI型トポイソメラーゼ(トポI)の働きを阻害する。1966年、M.E.ウォール(M.E.Wall)とM.C.ワニ(M.C.Wani)が天然産物から抗がん剤を系統的に選別している際発見した。中国原生のカンレンボク(Camptotheca acuminata)の樹皮と幹から単離された。カンプトテシンは予備的な臨床試験で著しい抗がん活性があることが示されたが、溶けにくく有害な副作用もある。この欠点があるため、この物質の利点を引き延ばす誘導体が数多く作られ、良い結果が得られた。2つのカンプトテシン類似物質トポテカン(topotecan)とイリノテカン(irinotecan)が承認され、今日におけるがん化学療法で用いられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    NCAM(別名: N-CAM、neural cell adhesion molecule、エヌキャム、神経細胞接着分子)は、神経細胞、グリア細胞、骨格筋細胞、ナチュラルキラー細胞(NK細胞)の細胞表面にある「細胞-細胞接着」を担う細胞接着分子・糖タンパク質である。神経軸索伸長、シナプス可塑性、学習、記憶に機能している。CD56(CD分類)、Leu-19、NKH1と同一分子で、免疫グロブリンスーパーファミリー (immunoglobulin superfamily, IgSF) の一員である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-(メチルニトロソアミノ)-1-(3-ピリジル)-1-ブタノン(4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone、NNK)は、タバコに含まれるニトロソアミンで、強力な前発癌物質である。によって活性化される。タバコの煙によって暴露する生物指標化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シアン酸(シアンさん、cyanic acid)とは、分子式 CNHO で表される化合物である。構造異性体として、イソシアン酸 (H-N=C=O) と雷酸 (HO-N=C:) が挙げられる。ただし、シアン酸はイソシアン酸とは互変異性であり、相互に変換し続けて平衡状態にある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    酢酸ブチル(さくさんブチル、butyl acetate、酢酸n-ブチル)はラッカーの製造などに用いられる化学物質である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジクロフェナク(英: Diclofenac)は、フェニル酢酸系の非ステロイド性抗炎症薬(NSAIDs)の1種である。主に解熱、鎮痛のために用いられる。 日本では、ナトリウム塩のジクロフェナクナトリウム(英: Diclofenac sodium)が商品名「ボルタレン」(英: Voltaren、ノバルティス)「ジクトル®テープ」(久光製薬製造販売)が処方箋医薬品として販売され、いくつかの製剤が後発医薬品として製造されているほか、数カ国の外国では一般用医薬品(OTC医薬品)として承認されている。イギリス、アメリカなどでもナトリウム塩が用いられているが、少数の国ではカリウム塩であるジクロフェナクカリウム(英: Diclofenac potassium)も用いられる。 ジクロフェナクの安全性はかなり証明されているが、アレルギーを起こす可能性もある。 Diclofenacと言う名前は、2-(2-(2,6-dichlorophenylamino)phenyl)acetic acidから命名された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インターロイキン-5(Interleukin-5,IL-5)とはサイトカインの一種であり、液性免疫を制御するTh2サイトカインである。IL-5は当初、T細胞由来B細胞増殖分化因子(T-cell Replacing Factor,TRF)として発見された液性因子であり、好酸球分化因子、IgA産生促進因子などの名称でも呼ばれたが、のちにこれらはすべて同一の物質であることがわかった。通常二量体を形成して機能し、単量体では生理活性を示さない点が特徴的である。好酸球に対して主に作用を示し、分化・増殖を引き起こす。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アファチニブ(Afatinib)は、EGFR 遺伝子変異陽性の非小細胞肺癌 (NSCLC) の治療に用いられる (TKI) の一つである。EGFRおよびerbB-2 (HER2) を非可逆的に阻害する。商品名ジオトリフ。米国、欧州、台湾、メキシコ、チリ、日本などで承認されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    タプシガルギン(thapsigargin、サプシガルジン)は、SERCA(sarcoplasmic/endoplasmic reticulum Ca2+ ATPase)の略称で知られている一群の酵素の非競合阻害剤のひとつである。 構造的には、タプシガルギンはセスキテルペンラクトンに分類され、植物から抽出される。タプシガルギンはほ乳類細胞における発がん促進物質である。抗マラリア薬アルテミシニンもセスキテルペンラクトンであることから、この薬物群が熱帯熱マラリア原虫(Plasmodium falciparum)といったマラリア原虫のSERCAを阻害することによって働いているという仮説が提唱されており、確認が待たれている。 タプシガルギンは、筋小胞体および小胞体へカルシウムを送り込む細胞の能力を妨げることによって細胞質基質カルシウム濃度を上昇させ、カルシウムの蓄えの枯渇を引き起こす。この蓄えの枯渇は、二次的に細胞膜カルシウムチャネルを活性化し、細胞質基質へのカルシウムの流入が起こる。 タプシガルギンは、オートファゴソームとリソソームの融合(オートファジー過程の最終段階)をはっきりと阻害する。オートファジー過程の阻害は、今度は小胞体ストレスを誘導し、最終的には細胞死が導かれる。 タプシガルギンは細胞質カルシウム濃度上昇の影響を調べる実験で有用である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ネプリライシン(英: neprilysin)は、ヒトではMME遺伝子にコードされる酵素である。Membrane metallo-endopeptidase(MME)、neutral endopeptidase(NEP)、cluster of differentiation 10(CD10)、common acute lymphoblastic leukemia antigen(CALLA)の名称でも知られる。ネプリライシンは亜鉛依存的なメタロプロテアーゼで、グルカゴン、エンケファリン、P物質、、オキシトシン、ブラジキニンなどのペプチドを疎水性残基のN末端側で切断する。また、ネプリライシンはアミロイドβを分解する。アミロイドβの異常なフォールディングと神経組織での凝集は、アルツハイマー病の原因として示唆されている。ネプリライシンは膜タンパク質として合成され、ゴルジ体から細胞表面へ輸送された後、細胞外ドメインが切り離されることがある。 ネプリライシンはさまざまな組織で広く発現しているが、腎臓に最も豊富に存在する。急性リンパ性白血病(ALL)抗原としても一般的であり、ALLの診断の際に重要な細胞表面マーカーである。このタンパク質はプレB細胞型の白血病細胞に存在し、ALLの症例の85%を占める。 ネプリライシン(CD10)を発現している造血前駆細胞は、リンパ球系の共通前駆細胞であると見なされている。このことは、これらの細胞がT細胞、B細胞、ナチュラルキラー細胞へ分化できることを意味している。CD10は初期B細胞、プロB細胞、プレB細胞、そしてリンパ節の胚中心で発現しているため、血液学的診断に利用される。CD10陽性となる血液疾患には、ALL、、バーキットリンパ腫、急性期の慢性骨髄性白血病(90%)、びまん性大細胞型B細胞性リンパ腫、濾胞中心細胞リンパ腫(70%)、有毛細胞白血病(10%)、骨髄腫(一部)が含まれる。急性骨髄性白血病、慢性リンパ性白血病、マントル細胞リンパ腫、ではCD10陰性となる傾向にある。CD10はプレB細胞に由来する非T細胞性ALL細胞や、バーキットリンパ腫や濾胞性リンパ腫などの胚中心関連非ホジキンリンパ腫でみられるが、より成熟したB細胞に由来する白血病細胞やリンパ腫ではみられない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コーヒー酸(コーヒーさん、caffeic acid)は、ケイ皮酸のパラ位及びメタ位がヒドロキシ化された構造を持つ芳香族カルボン酸で、フェニルプロパノイドの1種である。化学式はC9H8O4、分子量は180.16。IUPAC名は 3,4-ジヒドロキシケイ皮酸 (3,4-dihydroxycinnamic acid)。カフェ酸、カフェイン酸とも呼ばれる。コーヒー酸はリグニン生合成の重要な中間体であるため、全ての植物に含まれている。 キナ酸とのエステルがクロロゲン酸であり、メタ位のヒドロキシ基がメトキシ基になったものはフェルラ酸として知られる。その他エステルとして植物界に広く分布し、その一部はタンニンとして知られる。生合成はチロシンあるいはフェニルアラニンが原料であり、ケイ皮酸の酸化による。 クロロゲン酸は、コーヒー酸のカルボキシル基がキナ酸5位のヒドロキシ基と脱水縮合した構造を持つ化合物である。 IARCは、コーヒー酸(カフェ酸)をヒトに対する発癌性の恐れがあるGroup2Bとしている。 有機半導体への応用が報じられた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    Fas受容体(Fasじゅようたい、英: Fas receptor、Fas、FasR)は、ヒトではFAS遺伝子にコードされるタンパク質であり、APO-1(apoptosis antigen 1、APT)、CD95(cluster of differentiation 95)、TNFRSF6(tumor necrosis factor receptor superfamily member 6)という名称でも知られる。Fasはヒト線維芽細胞株FS-7によって免疫化を行ったマウスによって産生されたモノクローナル抗体を用いて最初に同定された。そのため、Fasという名称はFS-7-associated surface antigenの略称に由来する。 Fas受容体は細胞表面に位置するであり、そのリガンドであるFasリガンド(FasL)が結合した場合にプログラム細胞死(アポトーシス)をもたらす。この経路は2つのアポトーシス経路のうちの1つであり、もう1つはミトコンドリアを介した経路である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    パクリタキセル(Paclitaxel、略称: TXL、PTX、PAC)は、がん化学療法において用いられるの一つである。タキサン系に属する。タイヘイヨウイチイ(Taxus brevifolia )の樹皮から単離され、「taxol(タキソール)」と命名された。後に、樹皮中の内生菌がパクリタキセルを合成していることが発見された。 ブリストル・マイヤーズ スクイブ(BMS)社によって商業的開発された際、一般名がPaclitaxel(パクリタキセル)へと変更され、BMS社の化合物はTaxol(タキソール)という商標で販売されている。パクリタキセルは水にほとんど溶けない為、この製剤では、ポリオキシエチレンヒマシ油とエタノールに溶解されている。パクリタキセルをアルブミンに結合させたより新しい製剤は「アブラキサン」の商標で販売されている。 パクリタキセルは肺がん、卵巣がん、乳がん、頭頸部がん、進行性カポジ肉腫患者の治療に用いられている。また再狭窄の予防にも用いられている。 パクリタキセルは微小管を安定化させることで微小管のダイナミクスを抑制し、その結果正常な細胞分裂の進行を妨げる。ドセタキセル(商品名タキソテール)と共に医薬品分類のタキサン類を構成する。フロリダ州立大学のロバート・ホルトンによって初めて全合成された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    タウリン(英: taurine [ˈtɔːriːn])は、構造式が H2N-CH2-CH2-SO3H の物質。別名アミノエチルスルホン酸。IUPAC名は 「2-アミノエタンスルホン酸」。常温では無色の柱状結晶。水溶性であり、エタノールには不溶。分子量 125.15。約300℃で分解する。 生体中のほとんどすべての組織に存在し、植物に含まれている量はわずかで、動物、特にイカ・タコ・貝類・甲殻類・魚類(血合肉)など魚介類に豊富に含まれる。ヒトなど哺乳類では心臓や骨格筋、肝臓、脳、網膜など各組織や、胆汁、母乳などの体液に広く分布している。 タウリンは生体内で重要な働きを示す分子であり、含硫アミノ酸から合成される。なお、タウリンはカルボキシル基を持たないためアミノ酸には分類されないが、似ている物質であるためアミノ酸の一種と説明されることがある。タウリンは、原則としてタンパク質を構成せず、DNAの遺伝暗号にもコードされていない(参考:タンパク質を構成するアミノ酸)。このため、通常は遊離状態で種々の動植物の組織中に見出される。 有機合成化学ではシスタミンの酸化、システアミンの酸化のほか、とアンモニアなどから誘導される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アゼライン酸(アゼラインさん、Azelaic acid)は、有機化合物のひとつで、白色粉末の飽和ジカルボン酸。小麦、大麦、ライ麦中に含まれている一成分。ポリマーや可塑剤など多様な工業製品の前駆体となり、また、髪や肌の調子を整えるための製品にも含まれている。 米国ではニキビ、酒皶の治療に承認されている。メラニンの生成を抑制し、美白剤として認知され処方されているが承認はない。慢性毒性、変異原性、催奇形性を示すデータはない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インターロイキン-2(英: Interleukin-2, 略称: IL-2)は、サイトカインの一つである。IL-2は未分化なT細胞(ナイーブT細胞)及びインターフェロンγやIL-12の刺激を受けてナイーブT細胞から分化した1型ヘルパーT細胞によって産生され、Th1サイトカインと呼ばれるグループに分類される。IL-2は細胞性免疫に関与している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コカイン(英語: cocaine)は、コカの木に含まれるアルカロイドで、局所麻酔薬として用いられ、また精神刺激薬にも分類される。無色無臭の柱状結晶。 1885年にはじめて単離され、19世紀後半から20世紀初頭には広く販売されていたが、後に国際条約で規制され、麻薬に関する単一条約による規制に引き継がれている。日本の麻薬及び向精神薬取締法における麻薬である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピューロマイシン (Puromycin) は抗生物質の一つ。細菌の Streptomyces alboniger から得られた系抗生物質である。翻訳のプロセスを阻害することでタンパク質合成を阻害する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エンテロバクチン(Enterobactin、Enterochelin)とは、シデロホアの一種である有機化合物である。主にEscherichia coli やSalmonella typhimurium といったグラム陰性細菌から産生・分泌されることが見出される。 エンテロバクチンはシデロホアの中でも特に第三鉄(Fe3+)への化学親和性が強力であることが知られている(K = 1052 M−1)。この解離定数の値は、EDTA (Kf,Fe3+ ~ 1025 M−1)のといった他の大多数の金属キレート剤のものより大きい。このシデロホアを用いる病原菌は、たとえ低濃度であっても宿主細胞や環境中から生育に必須な鉄を獲得することができる。エンテロバクチンの鉄との錯体はFeEntと表記する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サリチル酸(サリチルさん、撒里矢爾酸、英: salicylic acid)は、の一種の植物ホルモン。化学合成も比較的容易である。消炎鎮痛作用、皮膚の角質軟化作用があり医薬品としてはイボコロリやウオノメコロリで知られ、洗顔料などにも配合される。 消炎鎮痛作用があるが、サリチル酸をそのまま服用すると、消化器障害の副作用が発生しやすく、酷い場合には胃穿孔を起こして腹膜炎の原因となることがある。この問題を解決するために開発されたアセチルサリチル酸(アスピリン)に内服薬としての地位は奪われた。ただ、サリチル酸には皮膚すらも冒す作用があり、これを利用し、皮膚の角化病変に対して外用薬として使用される場合はある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サイクロセリン(cycloserine; JAN)またはシクロセリンは、結核の治療に用いられる抗生物質である。具体的にはその他の抗結核薬と共に活性薬剤耐性結核の治療に用いられる。投与法は経口である。 主な副作用はアレルギー反応、発作、眠気、不安定、痺れがあげられる。腎不全、てんかん、うつ病、アルコール依存症の患者への投与は推奨されない。妊娠中の患者への投与による胎児の安全性は不明確である。サイクロセリンはアミノ酸の一種D-アラニンと構造が類似しており、その作用機序は細菌の細胞壁の成型を妨げることによるものである。 サイクロセリンは1954年にストレプトマイセス属細菌の一種から発見された。世界保健機関の必須医薬品リストに掲載される最も効果的で安全な医療制度に必要とされる医薬品である。開発途上国での卸値は1か月分で約29.70から51.30米ドルである。2015年の米国での値段は1か月分で3,150米ドルに値上がりしたが、その後1,050米ドルに値下がりした。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジヒドロキシアセトン (dihydroxyacetone, DHA) は炭素数3のケトースで、グリセルアルデヒドと並び最も小さな単糖である。皮膚に塗布すると小麦色を呈するため、サンレスタンニング用の肌色着色料として使われている。サトウダイコンやサトウキビから精製するか、グリセリンを酸化させることにより作られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    バイカリン(Baicalin)は、フラボノイド配糖体のひとつ。アグリコンはフラボンの骨格を持つバイカレインで、その7位にグルクロン酸が結合したグルクロニドである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2-アミノインダン(2-Aminoindane、2-AI)は、精神刺激薬の性質を持つ向精神薬、である。アンフェタミンのアナログであり、ラットの識別テストでは、一部代わりに用いられている。 日本では2007年より、薬事法の指定薬物に指定されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリメチルアミン-N-オキシド(英: trimethylamine N-oxide, TMAO)は、化学式が(CH3)3NOの有機化合物である。無色の固体で、二水和物の形で見られる。トリメチルアミンの酸化生成物であり、動物の一般的な代謝中間体である。海水魚、サメ、エイ、軟体動物および甲殻類において、尿素などに対するオスモライト(浸透圧調節物質)として存在している。さらに、周囲の海水の塩分濃度(およそ3%)に対して細胞内の塩分濃度をおよそ1%にまで低下させている。また、深海魚や甲殻類に多く含まれ、これが高い水圧によるタンパク質変性への耐性に寄与していることが示唆されている 。海産物の腐敗臭の原因の多くはトリメチルアミン-N-オキシドが分解して生じたトリメチルアミンによる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピリメタミン (英語: Pyrimethamine) は、ロイコボリンと併用してトキソプラズマ症やの治療に用いられる医薬品。ダラプリム (Daraprim) の名で市販されている。また、後天性免疫不全症候群患者のニューモシスチス肺炎 (PCP) を予防する第2選択肢として、ジアフェニルスルホンと共に用いられる。以前はマラリアにも使用されていたが、耐性原虫の出現のため現在では推奨されていない。ピリメタミンは経口摂取される。 に分類され、葉酸の代謝を阻害しDNA合成を妨げることによって作用する。一般的な副作用には、胃腸障害、重度のアレルギー反応、骨髄抑制が含まれる。葉酸欠乏性貧血の患者には使用すべきでない。また、発がんリスクを上昇させる可能性が懸念されている。妊婦に処方されることがあるが、胎児に対する安全性は不明である。 ピリメタミンは1952年に発見され、1953年から医療に用いられている。WHO必須医薬品モデル・リストに掲載されており、に必要な最も効果的で安全な医薬品と見なされている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アニリン (aniline) はベンゼンの水素原子の一つをアミノ基で置換した構造を持つ、芳香族化合物のひとつ。アニリンはIUPAC命名法の許容慣用名であるが、系統名ではフェニルアミン (phenylamine) またはベンゼンアミン (benzenamine) となる。ほかに慣用名としてアミノベンゼン (aminobenzene) がある。 染料、ゴムなどの化学製品、農薬や医薬品などを製造する際の中間物質として取り扱われている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フタル酸ベンジルブチル (Benzyl butyl phthlate = BBP) は、フタル酸とベンジルアルコール、ブタノールのエステルである。化学式C19H20O4で表される無色の液体である。主にポリ塩化ビニルの可塑剤として用いられた。毒性があると見なされている。 BBPは、床タイルによく使われるビニルフォームの可塑剤として普通に使われた。その他の用途は、食品工場のコンベアベルト、道路標識用のコーン、合成皮革である。 BBPは欧州化学局 (European Chemical Bureau = ECB) によって有毒であると分類されているため、ヨーロッパでの使用は急速に減少している。 2008年、四つの BBP販売業者がカルテルに参加したことで、ベルギー競争評議会 (Belgian Competition Council) から制裁を受けた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カナマイシン(Kanamycin、別名:カナマイシンA) はアミノグリコシド系抗生物質の一種。1957年に梅澤濱夫によってストレプトマイセス・カナマイセティカス (Streptomyces kanamyceticus ) から発見された。日本で最初に発見された抗生物質である。有機化学による全合成が可能であるが、工業的には微生物による生合成により生産されている。白色の粉末で、水溶性(50mg/mL)で有機溶媒に対しては難溶。製剤としては硫酸塩が経口と筋肉注射で用いられる。置換基の異なるベカナマイシン(カナマイシンB)等がある。分子生物学では、カナマイシン耐性遺伝子は選択マーカーとして利用されている。細胞培養ではマイコプラズマの除去に用いられる。 細菌性のリボソームと反応してその翻訳および蛋白質合成を阻害することにより毒性を発揮する。この毒性は真菌類には発揮されない。 WHO必須医薬品モデル・リストに収載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メフェナム酸(メフェナムさん、英: Mefenamic acid)は非ステロイド性抗炎症薬の一種。ポンタールなどの商品名で、頭痛や歯痛、生理痛の緩和などのために経口で使用される。メフェナム酸が減少すると炎症や子宮収縮などが生じるが、プロスタグランジン合成が阻害されることによるものだと考えられている。肝臓で代謝され、腎臓により体外への排出が行われる。このため、重度の肝・腎疾患の患者には処方されない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    セロトニン(英: serotonin)、別名5-ヒドロキシトリプタミン(英: 5-hydroxytryptamine、略称: 5-HT)は、必須アミノ酸トリプトファンから生合成される脳内の神経伝達物質のひとつで、動植物に広く分布する生理活性アミン、インドールアミンの一種。名称はserum(血清)とtone(トーン)に由来し、血管の緊張を調節する物質として発見・名付けられた。ヒトではドパミン・ノルアドレナリンを制御し精神を安定させる働きをするほか、生体リズム・神経内分泌・睡眠・体温調節などに関与する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メチルホスホン酸は、サリンの加水分解等によって生成される無毒の有機リン化合物である.

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ビスマス(英語: bismuth [ˈbɪzməθ])あるいは蒼鉛(そうえん)は、原子番号83の元素。元素記号は Bi(ラテン語: Bismuthumから)。第15族元素の一つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    上皮成長因子(じょうひせいちょういんし、Epidermal Growth Factor; EGF)は、53アミノ酸残基及び3つの分子内ジスルフィド結合から成る6045 Daのタンパク質。細胞表面に存在する上皮成長因子受容体 (EGFR) にリガンドとして結合し、細胞の成長と増殖の調節に重要な役割をする。上皮増殖因子、上皮細胞成長因子、上皮細胞増殖因子とも呼ばれる。胃酸分泌抑制因子β、βと同一物質である。1962年、マウス新生児に投与すると成長を促進する物質として、スタンリー・コーエンらによって唾液腺から発見された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アンモニア(英: ammonia)は、分子式が で表される無機化合物。常圧では無色の気体で、特有の強い刺激臭を持つ。 水に良く溶けるため、水溶液(アンモニア水)として使用されることも多く、化学工業では基礎的な窒素源として重要である。また生体において有毒であるため、重要視される物質である。塩基の程度は水酸化ナトリウムより弱い。 窒素原子上の孤立電子対のはたらきにより、金属錯体の配位子となり、その場合はアンミン(英: ammine)と呼ばれる。例えば: 名称の由来は、古代エジプトのアモン神殿の近くからアンモニウム塩が産出した事による。ラテン語の sal ammoniacum(アモンの塩)を語源とする。「アモンの塩」が意味する化合物は食塩と尿から合成されていた塩化アンモニウムである。アンモニアを初めて合成したのはジョゼフ・プリーストリー(1774年)である。 共役酸 (NH+4) はアンモニウムイオン(英: ammonium ion)、共役塩基 (NH−2) はアミドイオン(英: amide ion)である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トラネキサム酸(トラネキサムさん、Tranexamic acid)は、人工合成されたアミノ酸であり、止血剤・抗炎症剤として出血の予防・治療に用いられる。重度外傷、分娩後出血、外科手術、抜歯、鼻出血、重度月経などに投与される。遺伝性血管浮腫にも使用される。 1962年に岡本彰祐と岡本歌子により開発された。現在WHO必須医薬品モデル・リストに収録されている。日本国内では止血剤としてトランサミンなどの商品名でも販売され、また後発医薬品も存在する。肝斑の適応では第一類医薬品のトランシーノ内服薬が販売されており、ほか美白有効成分として化粧品にも含有される。 副作用はまれ 。血栓症の危険因子がある場合には注意が必要となる。投与経路は、経口、静注など。水に易溶。味は非常に苦いため、経口投与の際はカプセル剤に製剤化される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シトシン (cytosine) は核酸を構成する5種類の主な塩基のうちのひとつで、ピリミジン塩基である。分子量は 111.10。右図の構造に対応するIUPAC名は 4-アミノピリミジン-2(1H)-オン (4-aminopyrimidin-2(1H)-one) であるが、ほかに互変異性として、3H体と、4-アミノピリミジン-2-オールをとることができる。 シトシンから誘導されるヌクレオシドはシチジンである。DNA、あるいはRNAの二重鎖構造の中ではグアニンと3本の水素結合を介して塩基対を作る。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    イソ酪酸(イソらくさん、isobutyric acid)は、酪酸の構造異性体の1つである。ジメチル酢酸とも呼ばれる。IUPAC命名法では2-メチルプロピオン酸と呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メルカプトプリン(英語: mercaptopurine)とは、抗がん剤の一つで免疫抑制を示す。6-メルカプトプリンあるいはPurinethol(商品名)、ロイケリン散10%(商品名、大原薬品工業)とも呼ばれる。メルカプトプリンはの一種である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロルプロマジン(英語: Chlorpromazine)は、フランス海軍の外科医、生化学者 (Henri Laborit, 1914-1995) が1952年に発見した、フェノチアジン系の抗精神病薬である。精神安定剤としてはメジャートランキライザーに分類される。メチレンブルー同様、フェノチアジン系の化合物である。塩酸塩が医薬品として承認され利用されている。日本においてクロルプロマジンは劇薬に指定されている。商品名はウインタミン、コントミン。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    サッカリン (saccharin) は、人工甘味料の一つ。摂取しても熱量(カロリー)とならない。別名:o-スルホベンズイミド、o-安息香酸スルフィミド、2-スルホ安息香酸イミド。ベンゼン環に環が縮環した骨格を持つ。分子式は C7H5NO3S、分子量 183.19、CAS登録番号 [81-07-2]。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    パラクレシジン(para-Cresidine)は、色素や染料の生成に用いる中間体である。明るい黄色から明るい茶色の固体で、化学式は、C8H11ONまたはCH3OC6H3(CH3)NH2である。白色の結晶になる。発癌性物質のカテゴリーは、2であり、熱すると窒素酸化物を含む有毒な蒸気を発する。強い酸化剤と反応し、プラスチック、ゴム、皮膜を形成するものもある。パラクレシジンは、恐らくヒトにとっての発癌性物質である。沸点は235℃、融点は51.5℃で、水には全く溶けない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ペントスタチン (英語: Pentostatin) は、プリンアナログに分類される抗がん剤である。デオキシコホルマイシン(Deoxycoformycin)とも呼ばれる。商品名はコホリン、Nipent。 成人T細胞白血病リンパ腫および有毛細胞白血病の治療に用いられる。日本では、KMバイオロジクス株式会社がコホリン静注用7.5mgを販売している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    5-メチルテトラヒドロ葉酸-ホモシステインメチルトランスフェラーゼ(EC 2.1.1.13、5-Methyltetrahydrofolate-homocysteine methyltransferase、MTR)は、メチオニン生合成の最終段階を触媒する酵素である。メチオニンシンターゼ(Methionine synthase; MS)としても知られる。MTRはホモシステインからメチオニンを合成する、S-アデノシルメチオニンサイクル(メチオニン合成とも呼ぶ)を構成する。 MTRには、ビタミンB12(コバラミン)に依存して機能するタイプ(MetH)と、依存しないタイプ(MetE)の2種類が知られている。両者は反応機構・アミノ酸配列の点で共通点がなく、そのため互いに独立して進化したと推定されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロクロルペラジン(英:Prochlorperazine)とは神経遮断薬の1つで、統合失調症の治療に用いられる。ドパミンD2受容体を遮断することで抗ドパミン作用を示す。日本での製品名は「ノバミン」(塩野義製薬製造販売)

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アンドロゲン受容体 (AR)は核内受容体の一種。NR3C4 (nuclear receptor subfamily 3, group C, member 4)としても知られる。アンドロゲン受容体はアンドロゲンホルモンであるテストステロン、又は、ジヒドロテストステロンに細胞質で結合し活性化され、核内に移行する。 アンドロゲン受容体はプロゲステロン受容体と構造が似ており、高用量のプロゲスチンはアンドロゲン受容体を阻害する。 アンドロゲン受容体は転写因子として働き遺伝子の発現を制御する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グリベンクラミド (Glibenclamide)は、オイグルコンやダオニールとしても知られる、2型糖尿病の治療に用いられる医薬品である。食事療法や運動療法との併用が勧められる。他の抗糖尿病薬と併用されることがある。糖尿病1型に単独で使用することは推奨されない。投与法は経口である。 一般的な副作用には、吐き気と胸焼けがあげられる。重度の副作用には、血管性浮腫や低血糖があげられる。通常、妊娠中の人への投与は勧められないが、授乳中の人への投与は可能である。 グリベンクラミドはスルホニルウレアに属する医薬品であり、その作用機序は膵臓からのインスリンの分泌を増加させることにより効果がある。 グリベンクラミドは1969年に発見され、1984年に米国で医薬品として承認された。日本では1971年3月に承認された。2015年末時点でイタリア、ベルギーなど9カ国で承認されている。後発医薬品として入手可能である。2019年時点での英国の国民保健サービスにかかる1か月分の費用は約3.20ポンドである。米国での1か月分の卸値は約2.50米ドルである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インスリン様成長因子2(インスリンようせいちょういんし2、英: Insulin-like growth factor 2、略称: IGF-2、IGF-II)は、インスリンに類似した構造を持つペプチドホルモンある。中性のペプチドで、肝臓から分泌されて血中を循環すると考えられている。成長調節機能や、インスリンに類似した活性、細胞分裂促進作用を有する。その作用は、完全にではないものの成長ホルモンに大きく依存している。成人の主要な成長因子であるインスリン様成長因子1(IGF-1)とは対照的に、IGF-2は胎児の主要な成長因子であると考えられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジヒドロエルゴタミン(Dihydroergotamine; DHE)は 片頭痛治療に用いられる麦角アルカロイドのひとつ。 エルゴタミンからの誘導体。 鼻腔スプレーや注射薬として投与され、スマトリプタンど同様の作用が得られる。 吐き気はよくみられる副作用のひとつ。 トリプタン系薬剤と同様の作用を示す。 セロトニン受容体へのアゴニストとして作用し、頭蓋内の血管を収縮させる。ドーパミンとアドレナリン受容体に対しても作用する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トパキノン (英語: Topaquinone) は、アミノ酸の1種であるチロシンを原料として生合成される物質の1つである。銅を含むアミン酸化酵素と共に働く、酸化還元酵素の補因子の1つである。名称は2,4,5-trihydroxyphenylalanine-quinoneにちなむ。構造は1990年に初めて特定された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キシロース(xylose,木糖,Xyl)は、C5H10O5、分子量150.13の糖で、単糖、五炭糖及びアルドースに分類される。 天然にはD体のみが存在し、L体、DL体は有機化学合成によって作られる。CAS登録番号は、D体が[58-86-6]、L体が[609-06-3]、DL体が[41247-05-6]。 D-キシロースは、小腸で吸収されにくく、α-グルコシダーゼの活性を抑えるためグルコースの吸収を抑える作用があり、血糖値を抑制する作用がある。L-アラビノースにも同様の活性が認められ、D-キシロースよりも活性が強い。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    嚢胞性線維症膜コンダクタンス制御因子(のうほうせいせんいしょうまくコンダクタンスせいぎょいんし、英: cystic fibrosis transmembrane conductance regulator、略称: CFTR)は、脊椎動物に存在する膜タンパク質かつであり、CFTR遺伝子にコードされる。 CFTR遺伝子はABC輸送体型のイオンチャネルをコードし、上皮細胞の細胞膜を越えて塩化物イオンを透過させる。塩化物イオンチャネル機能に影響を与えるCFTR遺伝子の変異は肺、膵臓などの器官の上皮を覆う液体の輸送の調節異常をもたらし、嚢胞性線維症を引き起こす。合併症としては、高頻度の呼吸器感染症を伴う肺粘液の粘性の増加や、膵臓の機能不全による栄養不良や糖尿病などが挙げられる。これらの症状は、慢性的な障害や寿命の短縮につながる。男性では、発生中の精管(精索)や精巣上体で管内分泌の異常による閉塞と破壊が進行し、や男性不妊の原因となるようである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    葉酸(ようさん、英: folate)はビタミンB群の一種。ビタミンM、ビタミンB9、プテロイルグルタミン酸とも呼ばれる。栄養素のひとつ。水溶性ビタミンに分類される生理活性物質である。プテリジンにパラアミノ安息香酸と1つまたは複数のグルタミン酸が結合した構造を持つ。1941年に乳酸菌の増殖因子としてホウレンソウの葉から発見された。葉はラテン語で folium と呼ばれることから葉酸 (folic acid) と名付けられた。葉酸は体内で還元を受け、ジヒドロ葉酸を経てテトラヒドロ葉酸に変換された後に補酵素としてはたらく。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フタル酸(フタルさん、Phthalic acid)は示性式 C6H4(COOH)2 のベンゼンジカルボン酸である。狭義にはオルト体をフタル酸と呼ぶが、他異性体を含めたベンゼンジカルボン酸の総称もまたフタル酸(類)と呼称される。メタ体はイソフタル酸、パラ体はテレフタル酸とも呼ばれる。 遊離酸型のフタル酸類は一般的に、昇華性を有する無色固体で水にも有機溶媒にも溶けにくく、極性の高い有機溶媒に溶けやすいといった性質を示す。 フタル酸類は合成樹脂のモノマーとして利用されたり、特にエステル体の一部は、熱可塑性樹脂の可塑剤として30% - 70%w/wほど添加される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ε-カプロラクトン(イプシロン-カプロラクトン、ε-caprolactone)は、環状エステルおよびラクトンの一つで、化学式が(CH2)5CO2の七員環化合物である。常温では無色の液体で、多くの有機溶媒と混和する。工業的にはε-カプロラクタムの前駆体として多量に合成される。消防法に定める第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チアミン(英: thiamin, thiamine)は、ビタミンB1(英: vitamin B1)とも呼ばれ、ビタミンの中で水溶性ビタミンに分類される生理活性物質である。栄養素のひとつ。このほか、サイアミン、アノイリンとも呼ばれる。 日本では1910年に鈴木梅太郎がこの物質を米糠から抽出し、アベリ酸と命名。アベリ酸の「酸」たる原因は、実は成分中に入っていたニコチン酸が弱酸性に由来する事が分かり、その成分を除いた純粋な抗脚気効果を持つ成分について、1912年に改めてオリザニンとして発表。 糖質および分岐脂肪酸の代謝に用いられ、不足すると脚気やなどの症状を生じる。酵母、豚肉、胚芽、豆類に多く含有される。 補酵素形はチアミン二リン酸(TPP)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロピドグレル(Clopidogrel)は、チエノピリジン系の抗血小板剤の1つであり、虚血性心疾患、閉塞性動脈硬化症、脳血管障害での血栓生成抑制ならびに心筋梗塞予防に用いられる。商品名プラビックス(開発コードSR25990C)。血小板膜上のアデノシン二リン酸(ADP)受容体であるを阻害する。ただし、クロピドグレルはプロドラッグであって、活性体になるには主にCYP2C19による代謝を受ける必要があるものの、CYP2C19には活性の高いヒトと活性の低いヒトが存在しているために、薬効の出現には個体差が大きい。チクロピジンより副作用の頻度が低いが、時に致死的な出血、重篤な好中球減少症、血栓性血小板減少性紫斑病などの副作用を生じる。アスピリンとの合剤(商品名コンプラビン配合錠)が販売されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ハルミン (harmine) は、インドール構造とピリジン環を持つ三環式のβ-カルボリンアルカロイドに属する。自然界に広く分布し、植物、海洋生物、昆虫、哺乳類、またヒトの生体内に存在する。様々な国で伝統的に様々な用途の薬として用いられており、近年の研究は抗真菌、抗腫瘍、血管弛緩作用、インスリン感受性増加、幻覚性を明らかにしている。蛍光に発光する特性のため様々な試験に用いられる。 多くの植物に含まれ、特に中東の植物(ハルマルあるいはシリアン・ルーとも) や、南米のつる植物バニステリオプシス・カーピに含まれている。ハルミンを含む薬草の調合剤アヤワスカは、アマゾンの部族の儀式にて摂取される幻覚性の飲料である。 ハルミンは、モノアミンの分解を担う可逆性モノアミン酸化酵素A阻害薬(RIMA)である。ハルミンはMAO-Aにし、類縁体のは阻害しない。このモノアミン酸化酵素阻害作用は、食品に含まれるチラミンや、他の医薬品との相互作用が命に関わることにつながりうることを示す。アヤワスカのうつ病に対する効果、ハルミン単独で、生体での膵β細胞の増殖を誘導し血糖調節を改善できるという予備的な研究が示されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カルシウム感知受容体(英: calcium-sensing receptor+CaSR)とは細胞外のカルシウムイオン濃度を感知するGタンパク質共役受容体。上皮小体において、カルシウム感知受容体は上皮小体ホルモンの分泌を調整することによってカルシウムの恒常性を制御する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    一酸化硫黄(いっさんかいおう、sulfur monoxide)は硫黄酸化物の一種で化学式は SO である。非常に不安定な化学種であり単離された例はない。空気中では即座に酸化され二酸化硫黄となる。 基底状態で三重項の電子配置を取り、これは類縁体である酸素分子 (O2) と同様である。基底状態で三重項の電子配置をとる化合物は珍しく、同じく類縁体である S2 が一重項であるのと対照的である。 S−O結合長は148.1 pmであり、低級硫黄酸化物(例: S8O, S−O = 148 pm)で見られる結合長と同様であるが、ガス状のS2O (146 pm)、SO2 (143.1 pm)、SO3 (142 pm) よりも長い。 木星の衛星イオの火山ガスがプラズマ化したものなど、星間物質の中に含まれているとされる。 生体内での硫黄の代謝などに関する興味から研究が行われており、いくつかの化学的発生法が知られている。一酸化硫黄の生成はジエンなどで捕捉することによって確認される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ルチン(英: Rutin)は、薬草などとして用いられていたミカン科のヘンルーダから発見された柑橘フラボノイド配糖体の一種。化合物名は、単離されたヘンルーダの学名 Ruta graveolensから来ている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インターロイキン-4 (Interleukin-4, IL-4) とはサイトカインの一種であり、インターロイキンの中でも造血などに関与するヘマトポエチンファミリーというサブファミリーに分類される。IL-4は129個のアミノ酸から構成される可溶性タンパク質であり、活性化CD4+ T細胞をはじめ、マスト細胞、NKT細胞などによって産生される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェニルブタゾン (Phenylbutazone) は非ステロイド性抗炎症薬の一つで、短期的な鎮痛および動物の解熱に用いられる。 しばしば "bute" と略される。 アメリカ及びイギリスでは、白血球生産の抑制や再生不良性貧血などの重い副作用があるとして、人間には適用されなくなった。馬肉混入問題において、この薬の付着した馬肉が混入した恐れがあるとして調査対象となった。少くとも、イギリスでは一般に陰性の結果が得られている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    クロラムブシル(Chlorambucil) は、抗がん剤の一つ。 グラクソ・スミスクラインより、「Leukeran(リューケラン)」として販売されている。日本では未販売。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    没食子酸(もっしょくしさん または ぼっしょくしさん、gallic acid)は、有機化合物の一種で、芳香族カルボン酸。別名3,4,5-トリヒドロキシ安息香酸。白色の吸湿性の結晶で、昇華点 210 ℃。加熱すると脱炭酸してピロガロールを生じる。1818年にフランスの薬学者アンリ・ブラコノーにより発見され、テオフィル=ジュール・ペルーズにより研究された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホスホコリン(phosphocholine)は、組織内におけるホスファチジルコリン合成の中間体である。ホスホコリンはによって触媒されるATP + コリンをホスホコリンとADPに変換する反応によって作られる。ホスホコリンは例えばレシチン中に見出される分子である。 ホスホコリンは線虫やヒト胎盤によってホストの免疫応答を抑制するための翻訳後修飾としても用いられる。 また、C反応性蛋白 (CRP) の結合標的の一つである。したがって細胞が損傷を受けた時、CRPはホスホコリンに結合し、認識および食作用免疫応答を開始する。 ホスファチジルコリン (PC) は鶏卵(およびその他の多くの卵)の天然成分の一つであり、Egg-PCの形でしばしば生体模倣膜の研究に使用されている。様々な原料由来の精製されたPCが購入可能である。PCは通常、天然品(例: EggPC)と合成品に分けられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アログリプチン(Alogliptin)は、武田薬品工業の子会社が開発したDPP-4阻害薬に属する経口血糖降下薬の一つである。商品名ネシーナ。他のグリプチン系薬剤同様、体重増加をほとんど起こさず、低血糖を発現する危険が少なく、血糖低下作用は比較的弱い。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ソニック・ヘッジホッグ (Sonic hedgehog, SHH) は、ヘッジホッグ (HH) ファミリーに属する5種類のタンパク質の内の1つ。これをコーディングする遺伝子=ソニック・ヘッジホッグ遺伝子は、shhと小文字で表記する。このファミリーの他のタンパク質には、哺乳類ではデザート・ヘッジホッグ (Desert Hedgehog, DHH)、インディアン・ヘッジホッグ (Indian Hedgehog, IHH)があり、魚類ではエキドナ・ヘッジホッグ (Echidna Hedgehog, EHH) とティギーウィンクル・ヘッジホッグ (Tiggywinkle Hedgehog, TwHH) がある。 ヘッジホッグ遺伝子 (hh) は最初にエリック・ヴィーシャウスとクリスティアーネ・ニュスライン=フォルハルトの古典的なハイデルベルク・スクリーンにより同定されて、1978年に発表された。2人が1995年のノーベル生理学・医学賞を得たこれらのスクリーニングで、ショウジョウバエ (Drosophila melanogaster) の胚の分節パターンをコントロールするこの遺伝子が同定された。hh遺伝子の機能を失ったの表現型の胚は小さな歯の様な突起物(歯状突起)が密集しており、ヘッジホッグ(ハリネズミ)という名前が付いた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    Rac1 (RAS-related C3 botulinus toxin substrate 1) は、ヒト細胞に存在するタンパク質であり、RAC1遺伝子によりコードされている。RAC1は選択的スプライシングにより異なる機能を持ったいくつかのタンパク質を生成しており、このうちの1つがRac1である。 Rac1は、悪性黒色腫や肺非小細胞癌を含むさまざまな癌の発生において、重要な役割を果たしていると考えられている。そのため、現在これらの疾患に対する治療標的と考えられている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ビスフェノールA (bisphenol A, BPA) は化学式 (CH3)2C(C6H4OH)2 の有機化合物である。白色の固体であり、有機溶媒に溶けるが水には溶けにくい。一般には粉体であり、粉塵爆発を起こすことがあるため扱いに関して注意が必要。2つのフェノール部位を持っており、ポリカーボネートやエポキシ樹脂をはじめ、さまざまなプラスチックの合成に使われている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ノパリン(Nopaline)は、グルタミン酸とアルギニンの誘導体である化合物である。オパインの一種である。Tiプラスミドは、これらが生産するオピンの種類に基づいて、ノパリンプラスミド、オクトピンプラスミド、プラスミドに分類される。これらのオピンは、アミノ酸とケト酸が縮合したものか、糖に由来するものである。オピンは炭素源や窒素源として用いられ、アグロバクテリウム属に分解される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    レチノイン酸受容体α(英: retinoic acid receptor alpha、略称: RARα)またはNR1B1(nuclear receptor subfamily 1, group B, member 1)は、ヒトではRARA遺伝子にコードされる核内受容体である。 RARA遺伝子は17q21.2に位置し、転写因子として機能する核内ホルモン受容体をコードする。レチノイン酸受容体(RAR)はRARαの他に、、の2種類が存在する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    tert-ブチルアルコール(ターシャリー[tertiary]-ブチルアルコール、tert-butyl alcohol)または2-メチル-2-プロパノールとは最も単純な構造の第三級アルコールで、四種存在するブタノールの異性体の一つである。なお、特に産業分野では「tert-ブタノール」と称されることがあり、特許公報などでは広く用いられているが、この名称はIUPAC命名法に反する誤った名称であり、使うべきではない。tert-ブチルアルコールは透明な液体で樟脳のような臭いを持ち、水、エタノール、ジエチルエーテルと均一に混和する。融点が摂氏25度をわずかに上回るので、常温で固体になるという特徴はブタノールの異性体の中でも唯一である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アバカビル(abacavir, ABC)はHIV/エイズの予防と治療に用いられる薬剤である。他の逆写酵素阻害薬(NRTIs)と同様に、アバカビルはその他のと併用され、単体での使用は勧められない。投与法は錠剤または液体の経口であり、3か月以上の子供にも投与できる。 アバカビルは一般的に忍容性が高い。主な副作用は嘔吐、不眠症、発熱、疲労感などである。重度の副作用には、、が挙げられる。遺伝子検査により過敏症になるリスクが高いか診断できる。過敏症の症状は発疹、嘔吐、息切などである。アバカビルはNRTIの類型に分類される薬剤であり、その作用機序はHIVウイルスに必要な酵素である逆転写酵素を阻害することで効果がある。NRTIに分類されるアバカビルはである。 アバカビルは米国で1988年に特許認可され、1998年に使用認可された。日本では1999年9月に承認された。世界保健機関の必須医薬品リストに掲載されており、最も効果的で安全な医療制度に必要とされる薬剤である。後発医薬品として入手できる。開発途上国での2014年の卸売価格は1日分$0.36~$0.83米ドルである。米国での2016年の卸売価格は通常量1か月分$70.50米ドルである。一般的にアバカビルはその他のHIV治療薬と混合され、、、などの合剤で販売される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プレクチン(英: plectin)は、ほぼすべての哺乳類の細胞に見つかる巨大なタンパク質で、細胞骨格の3つの主要な構成要素であるアクチンマイクロフィラメント、微小管、中間径フィラメントの間の連結部として機能する。加えてプレクチンは、異なる細胞を構造的に連結している細胞膜のジャンクションと細胞骨格とを結合する。これらの異なるネットワークを結び付けることによって、プレクチンは組織の機械的完全性や粘弾性の維持に重要な役割を果たす。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カイネチン(kinetin、キネチン)は、細胞分裂を促進する植物ホルモンであるサイトカイニンの一種である。カイネチンはミラーおよびらによって加熱滅菌したニシン精子DNAから細胞分裂促進活性を有する化合物として単離された。オーキシンが培地中に存在するという条件で細胞分裂を誘導する能力からカイネチンと命名された。カイネチンは(オーキシンと併せて)カルスの形成を誘導するためににおいて、また(低濃度のオーキシンと共に)カルスからシュートを再生するためにしばしば用いられている。 長年、カイネチンはDNA中のデオキシリボース残基から作られるアーチファクトである(単離工程における加熱あるいは長期間の保存による分解)と考えられていた。したがって、カイネチンは天然には存在しないと考えられていたが、1996年以降、複数の研究者らによって、ヒトや様々な植物を含む調べられたほぼ全ての生物の細胞のDNAに天然に存在することが示されている。DNA中のカイネチンの産生機構はフルフラール(DNA中のデオキシリボース糖の酸化損傷産物)の産生およびアデニン塩基のN6-フルフリルアデニン(カイネチン)への変換によるフルフラールの消去によると考えられている。 1994年以降、カイネチンはヒトの肌細胞やその他の系における強力な抗老化効果が研究されている。現在のところ、カイネチンは数多くのスキンケア化粧品および薬用化粧品において幅広く使われている成分の一つである。ヒトに対するカイネチンのその他の生物効果に関する論文がいくつか発表されている。加えて、におけるRNAのスプライシング異常を正すことができることが示されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    鉄付加酵素(てつふかこうそ、ferrochelatase (FECH))は、プロトポルフィリンIXをヘムに変換するヘム生合成8段階の最後の反応酵素である。プロトポルフィリンにFe2+を付加する反応を触媒する。触媒反応は、 プロトポルフィリン + Fe++ ↔ + 2 H+ 鉄付加酵素は、497個のアミノ残基で構成され、分子量は55.4 kDaである。 + Fe2+ ⇔ + 2H+ プロトポルフィリンIX ヘム 鉄付加酵素は、ミトコンドリアに所在し、ヘム生合成においてプロトポルフィリンIXに鉄(Fe2+)を付加する反応を触媒する。鉄付加酵素の欠乏は、骨髄性プロトポルフィリアの発症に関係する。この遺伝について、異なる異性体を記述した2つの転写変異が見つかっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グアニル酸(グアニルさん、guanylic acid)は、ヌクレオチド構造を持つ有機化合物の一種である。グアノシン一リン酸 (Guanosine monophosphate) とも呼ばれ、GMPと略される。GMPは核酸塩基のグアニン、五炭糖のリボース、1つのリン酸より構成されており、リン酸とグアノシン(ヌクレオシド)の間でリン酸エステルを形成している。リン酸エステルの位置により、2'-体、3'-体、5'-体が知られる。5'-体はRNA中の部分構造として現れ、呈味性ヌクレオチドとしても用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エチオコランジオン(Etiocholanedione)または5β-アンドロスタンジオン(5β-Androstanedione)、またはエチオコラン-3,17-ジオン(Etiocholane-3,17-dione)は、天然のエチオコラン(5β-アンドロスタン)ステロイドであり、テストステロン、ジヒドロテストステロン、デヒドロエピアンドロステロン(DHEA)、アンドロステンジオンなどのアンドロゲンの内因性代謝物である。アンドロスタンジオンのC5エピマー(5α-アンドロスタンジオン)に相当する。エチオコランジオンは、他の5β還元型ステロイドのようなアンドロゲン活性は無いが、独自の生物学的活性がある。様々なモデルで強力な造血作用があることが判明している。また、動物実験および1993年に行われたヒトを対象とした二重盲検プラセボ対照臨床試験において、体重減少を促進することが確認されている。これらの効果は、DHEAと似ていると言われている。DHEAとは異なり、エチオコランジオンは更に代謝されてアンドロゲンやエストロゲンのようなステロイドホルモンになる事はない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グルコセレブロシダーゼ(glucocerebrosidase; EC 3.2.1.45)は、真核細胞生物の細胞内ライソゾームに局在する加水分解酵素である。生体糖脂質であるGlc-Cer(グルコセレブロシド)の糖と脂質の脱水縮合部位を加水分解する反応を触媒する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    バニリン(華尼林、英: vanillin、中: 香草醛)は、バニロイド類に属す最も単純な有機化合物であり、バニラの香りの主要な成分となっている物質。ラテン語読みでワニリンと呼ばれることもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリエタノールアミン (triethanolamine、Trolamine) は有機化合物でアミンの一種。他のアミン同様、トリエタノールアミンは窒素原子上の孤立電子対により弱塩基性を示す。三個のヒドロキシ基を有することにより、水溶性とキレート能を示す。TEA と略称される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    カプロン酸(カプロンさん、caproic acid)は直鎖飽和カルボン酸である。IUPAC系統名ではヘキサン酸 (hexanoic acid) となる。消防法に定める第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロパン (独: Propan,英語発音: [ˈproʊˌpeɪn]) は、分子式 C3H8、構造式 CH3-CH2-CH3 で表されるアルカンである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ウンベリフェロン (umbelliferone) または7-ヒドロキシクマリン (7-hydroxycoumarin) は、広く天然に存在するクマリン誘導体である。ココナッツ、コリアンダーおよびセイヨウトウキなどのセリ科(保留名Umbelliferae)植物などで生成する。黄色を帯びた白色の結晶で、熱水には僅かしか溶けないがエタノールには溶ける。紫外光を強く吸収する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アセチルセロトニン-O-メチルトランスフェラーゼ(acetylserotonin O-methyltransferase, ASMT)は、メラトニン生合成の最終反応を触媒する酵素で、ノルメラトニンをメラトニンに変換する。この反応は、トリプトファン代謝経路にも組み込まれており、そちらではからに変換する。 ヒトでは、この酵素はASMT遺伝子にコードされており、この遺伝子はX染色体とY染色体の両方に全く同じく存在する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ミエロペルオキシダーゼ(MPO)はペルオキシダーゼに分類される酵素であり、ヒトではMPO遺伝子にコードされている。 この酵素は好中球に多く存在する。リソソームタンパクの一種であり、好中球ではアズール顆粒に蓄えられる。MPOはヘム色素を持ち、大量に分泌されると膿や粘液を緑に染めることがある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キシリトール (xylitol) は化学式 C5H12O5 で表される、キシロースから合成される糖アルコールの一種。メソ化合物である。天然の代用甘味料として知られ、最初はカバノキから発見されギリシア語 Ξυλον(Xylon、木)から命名された。北欧諸国で多用されている。旧厚生省は天然にも存在する添加物に分類している。 があり、後味の切れが早い。スクロースと同程度の甘みを持ち、エネルギーが4割低い。分子量は152.15である。また、加熱による甘みの変化がないため、加工にも適している。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トランスフェリン(Transferrin)は血漿に含まれるタンパク質の一種で、鉄イオンを結合しその輸送を担っている。類似のタンパク質には、卵白に含まれると、乳汁など外分泌液に含まれるラクトフェリンがあり、これらと区別するために血漿トランスフェリンまたはセロトランスフェリン(Serotransferrin)と呼ぶこともある。シデロフィリン(siderophilin)と記述されることもある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オベチコール酸(Obeticholic acid)は6α-エチル-ケノデオキシコール酸とも呼ばれる半合成胆汁酸アナログである。いくつかの肝疾患治療薬として開発中である。日本と中国では大日本住友製薬が、他地域ではIntercept Pharmaceuticalsが開発を担当している。開発コードINT-747。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ノギテカン(Nogitecan (JAN))またはトポテカン(Topotecan (USAN))はに分類される薬剤であり、癌化学療法に用いられる。水溶性の、カンプトテシン類縁物質である。小細胞肺癌、卵巣癌、子宮頸癌等への使用が承認されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チミジン三リン酸(チミジンさんリンさん、Thymidine triphosphate、略号TTP)またはデオキシチミジン三リン酸(デオキシチミジンさんリンさん、 deoxythymidine triphosphate、略号dTTP)は、4つのヌクレオチド三リン酸の一つで生体内(In vivo)DNA合成に利用される。またDNAリガーゼによって、細菌性プラスミドの突起端を閉じる際の"sticky ends"を形成する場面に利用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トピロキソスタット(Topiroxostat)は痛風および高尿酸血症の治療薬である。商品名ウリアデック;三和化学研究所、トピロリック;富士薬品製造販売。日本で開発され、2013年6月に承認を取得した。 2016年6月から、トピロリックで富士薬品とファイザーの共同販促(コ・プロモーション活動)が開始された。 トピロキソスタットはフェブキソスタットと同様に、キサンチン酸化還元酵素(XOR)を阻害して尿酸の生成を抑制し、血中尿酸値を低下させる。XORの阻害は競合的である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インドール-3-酢酸(英: indole-3-acetic acid、略称: IAA)は、オーキシンと呼ばれる植物ホルモンの一種で、複素環式化合物の一つである。無色の結晶で、オーキシンの中ではおそらく最も重要である。インドールの誘導体で、インドール環の3位にカルボシメチル基(酢酸基)を持つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-ヒドロキシフェニルピルビン酸(4-ヒドロキシフェニルピルビンさん、4-Hydroxyphenylpyruvic acid)は、フェニルアラニンおよびチロシンの代謝中間体の一つ。(EC 2.6.1.5)によってチロシンから合成され、4-ヒドロキシフェニルピルビン酸ジオキシゲナーゼ(EC 1.13.11.27)によってホモゲンチジン酸に変換される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チオ硫酸塩(チオりゅうさんえん、英: thiosulfate)は、硫黄のオキソアニオン、チオ硫酸イオン S2O32- を含む塩である。接頭辞「」は、硫酸イオンの酸素原子が硫黄原子で置換されたものであることを示している。チオ硫酸塩は自然に存在し、ある特定の生化学的プロセスによって生成される。銀鉱石の精錬、皮革製品の製造、繊維への染料の定着などに使われる。また、チオ硫酸ナトリウムは写真撮影においてハイポと呼ばれ、現像後の白黒ネガのとして用いられた。今は3〜4倍速く反応する「迅速定着剤」としてチオ硫酸アンモニウムが使われている。いくつかのバクテリアはチオ硫酸塩を代謝することができる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アデノシンデアミナーゼ(ADA:adenosine deaminase; EC 3.5.4.4)は、細胞内で核酸の代謝に関わる酵素である。これが先天的に欠損していると重篤な免疫不全の原因になる。また、結核の診断において胸水・髄液中ADA活性の上昇が特徴的として知られており、臨床的に利用されている。 働きは、核酸塩基の一種アデノシンを分解しイノシンとアンモニアを生成することである。同様にアデノシンを代謝するものとしてアデノシンキナーゼが存在するが、ADAはアデノシン濃度が高いときに特に働いている。 血液腫瘍(白血病など)、肝炎などで高値を示すほか、胸水が結核性の場合は細菌性・心原性のときに比べて胸水中ADA濃度が上昇する。髄膜炎でも同じく、結核性髄膜炎では髄液中ADA濃度が高値を示す。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    オレイン酸(オレインさん、英: oleic acid、数値表現 18:1(n-9)または18:1(Δ9))は動物性脂肪や植物油に多く含まれている脂肪酸である。炭素原子間の二重結合を介して結合している一価の不飽和脂肪酸である。シス型のシスモノエン脂肪酸。18:1 (n-9) の略号で表される。消防法に定める第4類危険物 第3石油類に該当する。一価不飽和脂肪酸のω-9脂肪酸に分類される。 オレイン酸の命名は、オリーブ (Olea europaea) の油から単離されたことが由来である。浅黄色から黄褐色をした液体で、ラードのようなにおいをしている。水には溶けず、クロロホルム、アセトン、ジエチルエーテルなどの有機溶媒に溶ける。比重は25℃で 0.89、融点 16.3℃。一部の植物油、例えばオリーブ油などの不乾性油やそれを原料とした油の豊富な食品に多く含まれる。二重結合をひとつしか含まないので酸化されにくいが、飽和脂肪酸と比較すれば当然酸化されやすい。 オレイン酸は皮膚に塗布した場合に皮膚バリア構造を破壊しうる。特に脂漏性皮膚炎を悪化させうる。クリームやローション等の化粧品の原料に多く用いられている。 不飽和脂肪酸共通の性質については「不飽和脂肪酸」を参照

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ノルメラトニン(Normelatonin)またはN-アセチルセロトニン(N-Acetylserotonin)は、セロトニンからのメラトニンの合成の中間体として、天然に生成する化合物である。アルキルアミン-N-アセチルトランスフェラーゼの作用によってセロトニンから生成し、アセチルセロトニン-O-メチルトランスフェラーゼの作用によってメラトニンになる。メラトニンと同様、ノルメラトニンはMT1、MT2、MT3のアゴニストとなり、神経伝達物質でもあると考えられている。さらにノルメラトニンは、セロトニンもメラトニンも分布しない脳の特定の画分に分布し、これは単にメラトニン合成の前駆体としての役割を果たすだけではなく、中枢神経系における独自の機能を持つことが示唆されている。 近年、ノルメラトニンはセロトニンやメラトニンと異なり、強いTrkBアゴニストとして働くことが示された。TrkBが仲介する強い抗うつ、神経防護、神経栄養効果を示す。さらに、ノルメラトニンを欠くAANATノックアウトマウスは、強制水泳試験等の抗うつ試験において、不動時間がかなり長くなることが示された。 またノルメラトニンは、選択的セロトニン再取り込み阻害薬やモノアミン酸化酵素阻害薬の抗うつ効果に対しても重要な役割を果たしている。選択的セロトニン再取り込み阻害薬のフルオキセチンやモノアミン酸化酵素A阻害薬のクロルギリンは、セロトニン作動性の機構によってAANATを間接的に上方調整し、それによって慢性投与後にノルメラトニンの濃度を上昇させ、抗うつ効果を発現させる。さらに、光の照射はノルメラトニンの合成を阻害し、モノアミン酸化酵素阻害薬の抗うつ効果を下げる。これらのデータは、ノルメラトニンの気分調整や抗うつ効果に対する役割を強く支持している。 また機構は未知であるが、ノルメラトニンは、モノアミン酸化酵素阻害薬による治療に伴って見られる起立性低血圧の原因でもあると考えられている。ノルメラトニンはネズミの血圧を低下させ、松果体切除は、ノルメラトニンやメラトニンの合成の場である)によって、クロルギリンの低血圧効果はなくなる。しかし、同じようにノルメラトニン濃度を上昇させる選択的セロトニン再取り込み阻害薬で起立性低血圧が見られない理由は分かっていない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プテリン (pterin) はピラジン環とピリミジン環から構成される有機化合物である。ピリミジン環上にカルボニル酸素とアミノ基を持ち、下記に示す通りいくつかの互変異性体がある。プテリンは複素環式化合物のうち、プテリジン類に属する。 プテリンは蝶の羽の色素から初めて発見された(そのため、この名前はギリシャ語で「羽」を意味するpteronにちなんでつけられた)。生物界で広く色に関する役割を担っている物質で、酵素の触媒における補因子としての機能も知られている。 葉酸やその誘導体は、4-アミノ安息香酸とプテリンが結合した構造のにグルタミン酸が縮合した構造を持ち、それらは生物内で多種類の炭素官能基の受け渡しに関わる重要な化合物群である。葉酸が関与する生合成としては、S-アデノシルメチオニンサイクルでのホモシステインのメチル化や、tRNAに結合して翻訳を開始させる N-ホルミルメチオニンを得るためのホルミル化が挙げられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アナグリプチン(Anagliptin)は、ジペプチジルペプチダーゼ阻害薬に分類される経口血糖降下薬の一つである。ジペプチジルペプチダーゼはインクレチンの分解などに関係する酵素であり、これを阻害することにより血中のグルカゴン様ペプチド-1(GLP-1)の濃度を高め、血清インスリン濃度の上昇および血糖値の低下をもたらすと考えられている。ジペプチジルペプチダーゼ-4(DPP-4)によって分解されるGLP-1以外のペプチド基質については、DPP-4の項を参照されたい。GLP-1アナログ製剤と同じくインクレチン関連薬に分類される。 他のDPP-4阻害薬と同様、SU剤に代表される経口血糖降下薬に比べて、体重増加を起こすことは少なく、低血糖をきたす危険も少なく、血糖低下作用は比較的弱い、と言われている。 2012年11月から、日本国内では興和創薬からスイニー錠という製剤名で販売されている。剤形は100mg錠がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アメリシウム (英: americium [ˌæməˈrɪsiəm]) は原子番号95の元素。元素記号は Am。アクチノイド元素の一つ。第3の超ウラン元素でもある。安定同位体は存在しない。銀白色の金属で、常温、常圧で安定な結晶構造は六方最密充填構造 (HCP)。比重は13.67で、融点は995 °C (850-1200 °C)、沸点は2600 °C。展性、延性があり、希酸に溶ける。原子価は、+2〜+6価(+3価が安定)。化学的性質はユウロピウムに類似する。発見された同位体の中で最も半減期が長いのは、アメリシウム243の7370年である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シプロヘプタジン(Cyproheptadine)は第一世代抗ヒスタミン薬の一つである。抗コリン作用、、を持つ。商品名ペリアクチン。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリクロロエチレン (trichloroethylene) は有機塩素化合物の一種である。エチレンの水素原子のうち3つが塩素原子に置き換わったもの。洗浄剤として使われたが、発がん性があることが明らかとなった。常温では無色透明の液体で、不燃性である。揮発性があり、甘い香りを持つ。 脱脂力が大きいため、半導体産業での洗浄用やクリーニング剤として1980年代頃までは広く用いられていた。しかし発癌性が指摘され、代替物質への移行が行われている。 土壌汚染や地下水汚染を引き起こす原因ともなるため、各国で水質汚濁並びに土壌汚染に係る環境基準が定められている。日本では化学物質審査規制法により、1989年に第二種特定化学物質に指定された。国際がん研究機関の発がん性評価ではグループ 1 の「ヒトに対する発癌性が認められる」物質として規定されている。このがんリスクにより、労働安全衛生法の第二類物質特別有機溶剤等にも指定されている。 工業的な合成法とされていたのは、銅などの触媒のもと、1,2-ジクロロエタンに塩素、または塩素と酸素を作用させる方法であった。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ザナミビル (Zanamivir) は、世界で最初に開発されたインフルエンザ治療薬。抗インフルエンザウイルス剤とも呼ばれる。リレンザ(Relenza、登録商標第3253396号ほか)の商品名でグラクソ・スミスクラインにより販売されている。A型インフルエンザウイルス、B型インフルエンザウイルスに効果を示すが、C型インフルエンザウイルスには無効である。 日本でザナミビルの成分特許は切れているが、後発医薬品は無い。 2014年には、完全な臨床試験データに基づく分析が公開され、この新たな証拠に基づいて備蓄するほどの恩恵があるのかの見直しが求められるとされた。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    キサンツレン酸(xanthurenic acid)は、マラリアの原因となる熱帯熱マラリア原虫(Plasmodium falciparum )のを誘導することで知られる化合物である。ハマダラカの消化管でも見られる。 キサンツレン酸は、トリプトファンの摂取後ピリドキシン(ビタミンB6)が不足した動物によって蓄積または排出される代謝中間体である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    α-ラクトアルブミンは、タンパク質である。牛乳の乳清タンパク質の重要な成分であり(~1 g/l)、また他の多くの哺乳類の乳にも含まれる。ヒトでは、LALBA遺伝子がコードする。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2-イソブチル-3-メトキシピラジン(英: 2-Isobutyl-3-methoxypyrazine)は、化学式C9H14N2Oで表されるピラジンの誘導体の一種である。IBMPとも略記される。天然にはグリーンペッパー、グリーンピース、コーヒー、ジャガイモ、ゼラニウム油から検出され、特にピーマンの香りを構成する上で重要な物質である。嗅覚閾値は0.002ppbと非常に強い匂いを持ち、これは本物質1グラムを50万トンの水で希釈しても匂いを感じることができるほどである。消防法に定める第4類危険物 第3石油類に該当する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    MOPS(3-モルホリノプロパンスルホン酸、英:3-(N-morpholino)propanesulfonic acid)は、緩衝剤として利用される有機化合物の一つ。モルホリン基を持つ。グッドバッファーの一つに数えられるMESの、エタンスルホン酸部分がプロパンスルホン酸に置換した構造を持つ。生化学分野で広く用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    チモキノン (英: Thymoquinone) は、1,4-ベンゾキノン(p-ベンゾキノン)が持つ6員環の2位にイソプロピル基、5位にメチル基が結合した有機化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロゲステロン(英: progesterone)とは、ステロイドホルモンの1種である。一般に黄体ホルモン、プロゲストーゲンの働きをもっている物質として代表的である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ボルテゾミブ (Bortezomib、治験コード:PS-341)は、分子標的治療薬の一つ。商品名はベルケイド(Velcade)で、武田薬品工業の子会社である米国のミレニアム製薬社が開発した。 プロテアソーム阻害薬で、多発性骨髄腫およびマントル細胞リンパ腫に対して用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    モリン(morin)、はフラボノールに分類される有機化合物の一つ。黄色物質であり、 (Maclura pomifera)、、グアバの葉から単離される。 モリンは、溶液中のアルミニウムあるいはスズと錯体を形成し特徴的な蛍光を示すため、これらの分析試薬として使用される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロトポルフィリノーゲンオキシダーゼ(protoporphyrinogen oxidase)は、ヘム合成の7番目の反応に関与する酸化還元酵素である。 プロトポルフィリノーゲンオキシダーゼはプロトポルフィリノーゲンIXから水素原子を切り離し、プロトポルフィリンIXに変換する。 ---> プロトポルフィリノーゲンIX プロトポルフィリンIX

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    インドールアミン-2,3-ジオキシゲナーゼ(indoleamine 2,3-dioxygenase)は、トリプトファン代謝酵素の一つで、次の化学反応を触媒する酸化還元酵素である。 (1) D-トリプトファン + O2 N-ホルミル-D-キヌレニン(2) L-トリプトファン + O2 N-ホルミル-L-キヌレニン 酵素の組織名はD-tryptophan:oxygen 2,3-oxidoreductase (decyclizing)で、別名にIDO (ambiguous)、tryptophan pyrrolase (ambiguous)がある。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ペンタクロロフェノール(英: Pentachlorophenol、略称PCP)は、化学式C6HCl5Oで表される有機塩素化合物。 ベンゼン様の臭気を有する白色結晶で、有機溶媒に可溶。水にはほとんど解けないが、ナトリウムなどの塩にすれば溶ける。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    BAD(BCL2 associated agonist of cell death)はBcl-2ファミリーのアポトーシス促進性のメンバーであり、アポトーシスの開始に関与している。BADはBcl-2ファミリーの中でも、BH3-onlyファミリーのメンバーである。BADは他の多くのBcl-2ファミリーのメンバーと異なり、ミトコンドリア外膜や核膜への標的化を行うC末端の膜貫通ドメインを持たない。活性化後は、抗アポトーシスタンパク質とヘテロ二量体を形成することで、それらによるアポトーシスの停止を防ぐ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ビスモデギブ(英:Vismodegib)はヘッジホッグシグナル伝達経路に対する阻害薬の一種である。現在研究中の医薬品で、様々なタイプの腫瘍に使える分子標的薬として期待されている。開発名はRG3616またはGDC-0449である。2011年6月現在、アメリカなどで転移性の基底細胞癌での第II相試験を終了しており、転移性大腸癌、肺小細胞癌、進行性胃癌、膵臓癌、髄芽腫で第II相試験が進行中である。日本では中外製薬がライセンスを獲得しており、臨床試験が行われる予定となっている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    組織プラスミノーゲン活性化因子(tissue plasminogen activator:略称 t-PA または PLAT)は、線溶系に関与するセリンプロテアーゼの1種(EC 3.4.21.68)である。ウロキナーゼ(uPA)と同じく、プラスミノーゲンを活性化することでフィブリンを分解させ、血栓溶解薬として塞栓症および血栓性疾患(心筋梗塞・脳梗塞)の治療に使われる。組み換え型t-PA(rt-PA)も用いられている。 血管内皮細胞から分泌される。ウロキナーゼと同様に、1本鎖t-PA(前駆体)として作られ、プラスミン等により開裂されて活性の高い2本鎖t-PA(ジスルフィド結合でつながっている)となるが、1本鎖t-PAも活性を有する。プラスミノーゲンを活性化し、活性型のプラスミンを生成する。プラスミンは血栓のフィブリンを溶解するセリンプロテアーゼであり、また細胞外基質の分解にも関与する。t-PAは凝固線溶系において、1本鎖型のプラスミノーゲンを開裂し2本鎖型のプラスミンにする。このプラスミンがトロンビンを分解し血栓を溶解する。また細胞外基質の分解を通じて細胞移動やがんの転移にも関与する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    血小板活性化因子(けっしょうばんかっせいかいんし、英: platelet-activating factor、PAF)は、血小板凝集や脱顆粒、炎症、アナフィラキシーを含む多くの白血球機能の強力なリン脂質活性化剤・メディエーターである。AGEPC (acetyl-glyceryl-ether-phosphorylcholine) としても知られている。また、白血球の血管透過性、酸化的破壊、走化性や食細胞におけるアラキドン酸代謝の増強に関与している。 PAFは、好中球、好塩基球、損傷組織、単球/マクロファージ、血小板、血管内皮細胞を含む様々な細胞種による特異的な刺激に応答して産生される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フルオロメタン (fluoromethane) とは、示性式が CH3F と表される有機化合物。フッ化メチル、フロン41、HFC-41とも呼ばれる。無色の気体。 広義にはメタンの水素原子をいくつかフッ素で置換した化合物群を意味し、区別するために「フルオロメタン類 (fluoromethanes)」と呼ばれる。 フロン類(ハイドロフルオロカーボン)の一種である。温室効果が知られ、温暖化係数 (GWP) は 150。オゾン層破壊作用はない。 半導体工業で、ケイ素表面のエッチング剤として用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ラムノース (rhamnose, Rham) は、天然に存在するデオキシ糖の一種である。L-マンノースの 6位のヒドロキシ基が水素原子に置き換わった構造を持ち、メチルペントース、あるいはデオキシヘキソースに分類される。D体、L体のエナンチオマー、α体、β体のアノマーが知られ、天然には L体が見られる。ほとんどの糖について天然型が D体である中で、このラムノースは例外的である。同様に L体が天然に存在する糖として、フコース、アラビノースが挙げられる。 L-ラムノースはクロウメモドキ科(Rhamnus)の植物や、(通称ポイズン・スマック、ウルシ科ウルシ属の植物の一種)から単離される。他の植物の中にも、グリコシドの形(ラムノシド)で見られる。 再結晶の条件により、α体、β体を作り分けることができるが、溶液状態、あるいは吸湿によっても変旋光を起こす。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フルドロコルチゾン(英: fludrocortisone)とは合成コルチコステロイドの一つであり、中等度の糖質コルチコイド作用とそれ以上の鉱質コルチコイド作用を有する。 アメリカ合衆国での商品名はFlorinef、日本での商品名はフロリネフ()である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    コリンアセチルトランスフェラーゼ (choline acetyltransferase: 略称ChAT)は、アセチルCoAとコリンを基質として神経伝達物質であるアセチルコリンを合成する際に働く酵素である。神経細胞内で合成され、軸索輸送により神経終末に運ばれる。ヒトでは、コリンアセチルトランスフェラーゼはCHAT遺伝子によりコードされている。 * コリン * アセチルコリン

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フェルラ酸(フェルラさん、ferulic acid)はフィトケミカルとして植物の細胞壁などに存在する有機化合物。ケイ皮酸の誘導体で、リグニンを構成する。また、他の芳香族化合物の合成の前駆体となる。 地中海沿岸に自生するセリ科の植物オオウイキョウ(Ferula communis)から発見・命名された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シアナミド(Cyanamide)とは、分子式 CN2H2 で表される化合物である。化成品原料や肥料として利用される物質であり、医薬品としても使用される。 1910年には年間約2万トンを生産する工場が、ドイツ・イタリア・カナダ・フランス・および日本で操業されていた。1913年には生産量が10倍に増大し、1918年には戦時下の肥料と軍需向け窒素需要のために、年産は60万トンまで上昇した。1939年からメラミン樹脂の材料として生産量が増大した。1962年、世界総生産量は900万トンを超えた。この時の主要生産国は西ドイツ・日本・アメリカ合衆国であった。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジグリム (diglyme) とは、有機化学で用いられる高沸点の溶媒の一種。別名としてダイグライム、ジエチレングリコールジメチルエーテルとも呼ばれる。 diglyme は diethyleneglycol dimethyl ether の略。 ジエチレングリコールの2つのヒドロキシ基をメチル化した構造を持つ。水、各種アルコール、ジエチルエーテル、各種炭化水素系の溶媒と混和する。 ジグリムは主に化学反応の溶媒として用いられる。金属カチオンにキレート配位して対アニオンを活性化させることができる。そのため、グリニャール試薬や金属ヒドリドなどの金属化合物を反応剤とする場合に反応速度を上げる目的で用いられる。 この溶媒は塩基性に強く、強塩基存在下に加熱しても通常は安定である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    水酸化物イオン(すいさんかぶつイオン、英: hydroxide ion)とは、化学式が OH− と表される陰イオンのこと。水の共役塩基にあたり、水 (H2O) や水酸化物が電離すると生じる。かつては水酸イオンと呼ばれた。 金属イオンなどのさまざまな陽イオンと塩をつくり、水酸化物を与える。水酸化物には、水酸化ナトリウム (NaOH) など塩基性(アルカリ性)を示すものが多い。水酸化物イオンの中で、水素と酸素は共有結合でつながっている。一方、アルコールやフェノールなどの有機化合物が持つ OH 構造はヒドロキシ基と呼ばれ、通常、陰イオンとしては遊離しない。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ホルミウム (英: holmium [ˈhoʊlmiəm]) は原子番号67の元素。元素記号は Ho。希土類元素の一つ(ランタノイドにも属す)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ネビラピン(Nevirapine、略号:NVP)は、非ヌクレオシド系逆転写酵素阻害薬(NNRTI)であり、HIV-1感染症及びAIDSの治療に用いられる。商品名ビラミューン。他の抗レトロウイルス薬と同様に、ネビラピンを単剤で用いると速やかに耐性が形成されるので、他に2種類以上の抗レトロウイルス薬を併用することが望ましい。 基本的医療制度に必要な重要な医薬品としてWHO必須医薬品モデル・リストに掲載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    内皮型一酸化窒素合成酵素(ないひがたいっさんかちっそごうせいこうそ、英: endothelial nitric oxide synthase、略称: eNOS)または一酸化窒素合成酵素3(nitric oxide synthase 3、NOS3)は、ヒトではの7q35-7q36領域に位置するNOS3遺伝子によってコードされる酵素である。この酵素は、一酸化窒素(NO)の合成を行う3つの一酸化窒素合成酵素のうちの1つである。NOは気体の親油性低分子で、いくつかの生物学的過程に関与する。他の2つのアイソフォームは、脳の特定の神経細胞で恒常的に発現している神経型(nNOS、NOS1)と、一般的には炎症性疾患で発現が誘導される誘導型(iNOS、NOS2)である。eNOSは主に血管内皮でのNOの産生を担う。血管内皮は血管の内側表面に並んだ単層の扁平細胞からなり、内腔を循環する血液と血管壁の残りの部分との境界面となる。血管内皮でeNOSによって産生されるNOは、血管緊張、細胞増殖、白血球の接着、血小板の凝集の調節に重要な役割を果たす。そのため、健康な心臓血管系には機能的なeNOSが必要不可欠である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    モンテルカスト(Montelukast)は、ロイコトリエン阻害薬(LTRA)であり、主に気管支喘息や季節性アレルギー疾患の諸症状の治療に用いられる。錠剤、チュアブル錠(噛み砕く錠剤)、細粒の3製剤があり、1日1回の経口投与で用いられる。日本では商品名シングレア(MSD)、キプレス(杏林製薬)の2ブランドと、後発品も多数販売。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スタウロスポリン(staurosporine、抗生物質AM-2282、STS)は、1977年に大村智らによってストレプトマイセス属の放線菌Streptomyces staurosporeusから単離された天然物である。以後、ビスインドール骨格を有する同種の化合物が50種類以上単離されている。平面構造および相対立体配置はX線回折によって1978年、1981年に、絶対立体配置も同様にX線回折によって1994年に決定された。 スタウロスポリンは強力なプロテインキナーゼ阻害剤である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピリジン (pyridine) は化学式 C5H5N、分子量 79.10 の複素環式芳香族化合物のアミンの一種である。ベンゼンに含まれる6つの C−H 構造のうち1つが窒素原子に置き換わった構造をもつ。融点 −41.6℃、沸点 115.2℃。人間の女性からも分泌される。腐り果てた魚のような臭いを発する液体である。 石油に含まれるほか、誘導体(ピリジンアルカロイド)が植物に広範に含まれる。ニコチンやピリドキシンなどもピリジン環を持つ。酸化剤として知られるクロロクロム酸ピリジニウム (PCC) の原料として重要。また有機合成において溶媒として用いられる。 消防法による危険物(第四類 引火性液体、第一石油類(水溶性液体)(指定数量:400L))に指定されており、一定量以上の貯蔵には消防署への届出が必要である。 人間の皮膚と接触するとメラニンと反応を起こし黒く色素沈着を残すため保護手袋での取り扱いが必要である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ニロチニブ (Nilotinib)は、分子標的治療薬のの一つであり、塩酸塩一水和物がイマチニブ耐性の慢性骨髄性白血病の治療に用いられる。商品名タシグナ。開発コードAMN107。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    デオキシグアノシン(Deoxyguanosine、dG)は、ヌクレオシドの一つ。グアノシンに構造が似ているが、リボースの2'位の酸素原子が除去されてデオキシリボースになっている。5'位にリン酸が結合した場合、デオキシグアノシン一リン酸(Deoxyguanosine monophosphate)となる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    LMNAは、ヒトではLMNA遺伝子にコードされるタンパク質である。ラミンA/Cとしても知られ、ラミンAやラミンCはこのLMNA遺伝子から発現する。ラミンA/Cはラミンファミリーに属する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メキノール(INN: Mequinol)、または4-メトキシフェノール(IUPAC:4-Methoxyphenol)は、皮膚科学や有機化学で用いられるフェノールである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    脳由来神経栄養因子(のうゆらいしんけいえいよういんし、BDNF; 英: Brain-derived neurotrophic factor)は、標的細胞表面上にある特異的受容体TrkBに結合し、神経細胞の生存・成長・シナプスの機能亢進などの神経細胞の成長を調節する脳細胞の増加には不可欠な神経系の液性蛋白質である。 BDNFは、ヒトでは、BDNF遺伝子から生成される蛋白質である。BDNFは、成長因子の中の神経栄養因子の一つであり、標準的な神経成長因子と関連している。神経栄養因子は、脳や末梢で見出される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ベンズアルデヒド (benzaldehyde) は、芳香族アルデヒドに分類される有機化合物のひとつ。IUPAC系統名は、ベンゼンカルバルデヒド (benzenecarbaldehyde) 。ベンゼンの水素原子一つが、ホルミル基で置換された構造を持つ。 無色の液体。苦扁桃油(アーモンドの一種から取った薬用油)様の香気を持ち、揮発しやすい。芳香族アルデヒドは特異な臭いを有するものが多いが、ベンズアルデヒドはアーモンド、杏仁(アンズの種)の香り成分である。安価な香料として用いられるほか、抗炎症作用が認められている。酸化されやすく、酸化されると安息香酸になり、表面に膜状様物質として浮かぶ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    グリオキシル酸(グリオキシルさん、glyoxylic acid)は、1分子の中にアルデヒド基とカルボキシル基を持つカルボン酸の一種である。一部の植物や菌類が持ち、脂質からの糖新生を可能にするグリオキシル酸回路では、アセチルCoAと結合してリンゴ酸を作る。また、無電解めっきの還元剤としても使用される。 グリオキシル酸はヒトではエチレングリコールからシュウ酸に代謝される際の中間体で、体内で酸化を受けると有害なシュウ酸が生成されることになる。 ピリドキシン(ビタミンB6)は、グリオキシル酸を有害なシュウ酸するよりはむしろグリシントランスアミナーゼによりグリシンへの転換を促進する作用を有する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アビラテロン(Abiraterone)はプレドニゾンと組み合わせて転移のある去勢抵抗性前立腺癌(抗アンドロゲン薬による治療に反応しない癌)の治療に用いられる薬である。 アビラテロン酢酸エステルというプロドラッグの状態で処方される(商品名:ザイティガ(Zytiga))。 アビラテロンは6ヶ月の審査を経てアメリカ食品医薬品局 (FDA) によって2011年4月に認可された。日本では審査期間11ヶ月で2014年7月に認可された。第III相比較臨床試験において生存期間の中央値をプラセボ群の10.9ヶ月に対して14.8ヶ月に延長し、この臨床試験はこの成功にもとづいて中止された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ノルロイシン(norleucine、略号: Nle)は、ロイシンの異性体の一つである。構造はα-アミノ酸の2-アミノ-ヘキサン酸。天然のタンパク質中には存在しない。ノルロイシンは、タンパク質の構造と機能の研究で用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    リドカイン(独: Lidocain)は、世界で最も広く使用される局所麻酔薬であり、抗不整脈薬でもある。また、神経痛や手足のしびれの症状の一部にも有効である。静脈投与が可能な局所麻酔薬。塩酸塩である塩酸リドカインのほか、いくつかの有効な化合物がある。塩酸リドカインのアストラゼネカの商品名は「キシロカイン(Xylocaine)」である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    テトラサイクリンはテトラサイクリン系に属する抗菌薬である。内服薬はアクロマイシンVカプセル、軟膏はアクロマイシンの製品名でサンファーマ製造販売。数種の放線菌から産生された広範囲抗菌性抗生物質。黄色結晶、無臭。塩酸塩(塩酸テトラサイクリン)は黄色結晶性粉末。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    第XI因子(だい11いんし、英: factor XI)または血漿トロンボプラスチン前駆物質(plasma thromboplastin antecedent)は、血液凝固カスケードの酵素の1つ第XIa因子の酵素前駆体である。他の凝固因子と同様、セリンプロテアーゼである。ヒトでは、第XI因子はF11遺伝子にコードされる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    セリチニブ (英語: Ceritinib)は、一部の肺癌を対象とした治療薬の一つである。未分化リンパ腫キナーゼ (ALK) 阻害作用を持つ。米国では2014年4月に米国食品医薬品局 (FDA) から、クリゾチニブ治療後の転移のあるALK 陽性非小細胞肺癌の治療薬として承認された。日本では2016年3月に「クリゾチニブに抵抗性または不耐容のALK 融合遺伝子陽性の切除不能な進行・再発の非小細胞肺癌」を適応として承認された。商品名はジカディア。開発コードLDK378。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プルトニウム(英・羅: Plutonium 英語: [pluːˈtoʊniəm])は、原子番号94の元素である。元素記号は Pu。アクチノイド元素の一つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    プロピオニルCoA(Propionyl-CoA)は、化学式がC24H40N7O17P3Sで表される分子量が823.599 g/molの有機化合物である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    マロン酸(マロンさん、Malonic acid)は、構造式 で表されるジカルボン酸の一種。常温常圧で無色の固体。融点より少し高温に熱すると熱分解して酢酸と二酸化炭素になる。塩の場合、マロナートもしくはマロネートと呼ぶ(malonates)。マロンの名称はギリシア語のリンゴに由来する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    β-クリプトキサンチン(β-cryptoxanthin)は、天然に存在するカロテノイド色素の一つ。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    タダラフィル(Tadalafil)は、長時間型のであり、日本での適応は、勃起不全 (ED) 、肺動脈性肺高血圧症、前立腺肥大の排尿障害である。商品名はシアリス、アドシルカ、ザルティアである。 先行するED治療薬シルデナフィル(バイアグラ)やバルデナフィル(レビトラ)と異なり、翌日にも作用が持ち越す長時間型であり、食事の有無にかかわらず作用する点が異なる。 肝臓のCYP3A4によって代謝される。警告枠に、心筋梗塞などの副作用の注意と、心血管系障害の有無の十分な確認が記載されている。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリフルオロ酢酸(トリフルオロさくさん、trifluoroacetic acid)は化学式が C2HF3O2、またはCF3COOH と表されるカルボン酸である。しばしば TFA と略される。吸湿性があり、酸化力の無い有機強酸である。 分子構造は酢酸と似ているが、メチル基の水素が3個のフッ素原子に置換している。フッ素の電子求引性によりプロトン解離時のアニオン(共役塩基)は負電荷が非局在化し安定化されるため、酢酸よりも強い酸性を示す。トリフルオロ酢酸は有機溶媒に可溶な強酸であるという特徴から、しばしば有機合成化学において用いられる。酢酸と似た刺激臭を持つ無色の液体で、水にも混和性があり、酸解離定数 pKaは -0.3 である。 国際化学物質安全性カード (ICSC) ではヒトの身体への暴露について、「あらゆる接触を避ける」と記している。特に水中生物への有害性が高いため、漏洩物処理については「環境中に放出してはならない」とする。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ベンザミジン(Benzamidine)はトリプシン、トリプシン様酵素、セリンプロテアーゼの可逆的競合的拮抗薬である。 蛋白質のX線結晶構造解析の際に、目的の蛋白質が分解しないようリガンドとして用いられる。三角形のジアミン基がdifference density map上では“棒人間”の様に見える。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アリスキレン(Aliskiren)は、直接的に分類される降圧薬の一つである。承認されている効能・効果は「高血圧症」である。副作用が多く効果を示す研究が少ないので、高血圧の治療には他剤が推奨される。商品名ラジレス。 2011年12月、進行中の臨床試験で糖尿病および慢性腎不全を有する患者において非致死的脳梗塞、腎障害、高カリウム血症、低血圧が増加することが明らかとなり、臨床試験が中止された.。 2012年4月20日時点で、下記の禁忌・警告が追加されている。 * 糖尿病を有する患者にアリスキレンとアンジオテンシンII受容体拮抗薬(ARB)またはACE阻害薬(ACEI)を併用すると腎障害、低血圧、高カリウム血症を生じることがあるので禁忌である。 * 中等度および高度の腎機能障害(GFRが60mL/min未満)を有する患者にはARBまたはACEIとアリスキレンの併用はしないこと。 アリスキレンはスイスノバルティス社と社が共同開発した。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ピメリン酸(ピメリンさん、英: Pimelic acid)は、炭素数7の直鎖飽和脂肪族ジカルボン酸。化学式はHO2C(CH2)5CO2Hで表される。ピメリン酸の誘導体は、アミノ酸の一種のリシンの生合成に関与する。同じジカルボン酸のアジピン酸より一つ多いメチレン基をもち、ポリエステルやポリアミドの前駆体となる。 シクロヘキサノンとサリチル酸からの合成経路がある前者の経路では、エノラートと反応するシュウ酸ジメチルから炭素が供給される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ダコミチニブ ( PF-00299804 )は、非小細胞肺癌 (non-small cell lung cancer; NSCLC) の治療薬。ファイザー社がビジンプロとして、製造販売する。EGFR (HER 1) およびHER 2、HER 4の選択的かつ不可逆的な阻害剤である。 ダコミチニブはいくつかの第III相臨床試験を終えた。最初の試験の2014年1月の結果は期待外れであり、試験の目的を達成できなかった。 追加の第III相試験が行われた。 2017年に、NSCLC(突然変異EGFRによる)についてダコミチニブとゲフィチニブを比較した試験結果が発表された。 2018年8月、ファイザーは、米国FDAおよび欧州医薬品庁に医薬品申請を提出した。 2019年1月、日本でも「EGFR遺伝子変異陽性の手術不能又は再発非小細胞肺癌」について製造販売を承認された。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    8-オキソグアニン(英: 8-Oxoguanine)は活性酸素によりDNAが損傷した際に生成する主要な化合物の1つ。 DNA損傷部位はDNAグリコシラーゼの(OGG1)により塩基除去修復される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アンジオテンシンI (英: Angiotensin I)とは、プロホルモンとして作用するデカペプチドである。血圧と水分バランスの維持に関与する、レニン・アンジオテンシン・アルドステロン系 (RAAS) に結合する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    エストラジオール(英Estradiol、E2)とはエストロゲンの一種。性質等は、エストロゲンに詳しい。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ヒドロキシカルバミド(英語: Hydroxycarbamide)とは、1869年にドイツのDreslerらによって合成された尿素誘導体であり、代謝拮抗剤に分類される抗がん剤である。ヒドロキシウレア (Hydroxyurea) 、ヒドロキシ尿素ともいう。商品名は、ハイドレア(ブリストル・マイヤーズ スクイブ社販売)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    1-デオキシ-D-キシルロース-5-リン酸(1-デオキシ-D-キシルロース-5-リンさん、1-Deoxy-D-xylulose 5-phosphate、DXOP、DXP)は、非メバロン酸経路の中間生成物の一つ。によってピルビン酸とグリセルアルデヒド-3-リン酸から合成される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ケンペロール(ケンフェロール、kaempferol)は、フラボノイドの一種である天然フラボノールの一つである。ケンペロールは黄色結晶性個体であり、融点は276–278 °C。水にはわずかにしか溶けないが、熱エタノールおよびジエチルエーテルは可溶である。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    スムーズンド(英:Smoothened)とは7回膜貫通タンパク質(GPCR)の仲間でFrizzledファミリーに属し、ヘッジホッグシグナル伝達経路を担う膜タンパク質である。略称はSmoである。構造上、GPCRに分類され、Wnt受容体(Frizzled)とも配列類似性が高いために何らかの受容体とも考えられるが、現在のところその内因性リガンドには議論の余地がある。スムーズンドはカタカナ表記されることよりもローマ字表記されることが多いのでそれに倣い以下の表記は"Smoothened"に統一する。髄芽腫や基底細胞癌などに関与していることが知られる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    メラミン (melamine) は、有機化合物の一種で、構造の中心にトリアジン環、その周辺にアミノ基3個を持つ有機窒素化合物。ホルムアルデヒドとともに、メラミン樹脂の主原料とされる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    レゾルシノール (resorcinol) とは、1,3-ジヒドロキシベンゼンという有機化合物の一種。ベンゼン環のメタ位に 2個のヒドロキシ基を有する構造を持つベンゼンジオールの1種で、カテコール、ヒドロキノン(ハイドロキノン)の位置異性体にあたる。水によく溶ける。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    フルオロウラシル(英語: fluorouracil、5-フルオロウラシル、5-FU)は、フッ化ピリミジン系の代謝拮抗剤で、抗悪性腫瘍薬(抗がん剤)。ウラシルの5位水素原子がフッ素原子に置き換わった構造をしている。 1956年にドゥシンスキ (Dushinsky) らによって合成され、その後ハイデルバーガー (Heidelberger) らを中心として基礎および臨床にわたる広範な研究で抗悪性腫瘍剤としての評価が確立された。 代表商品は「5-FU XX(剤形)協和」(協和発酵キリン)。古くからあるため、ジェネリック医薬品も多数流通している。また、1990年代よりフルオロウラシルのプロドラッグ化などの改良を施し、より強い効果が期待される薬剤(内用薬)が開発され、市販されている(後述)。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ベムラフェニブ(Vemurafenib)はB-Raf酵素阻害剤であり、根治不能な進行期悪性黒色腫の治療に用いられる。商品名ゼルボラフ。開発コードRG7204。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ジストロフィン (dystrophin) は棒状の細胞質タンパク質で、として知られるタンパク質複合体の一部をなす。この複合体は細胞膜を越えて、筋繊維の細胞骨格とその周囲の細胞外マトリックスを接続している。コスタメアには他に・・・・・など多くのタンパク質がある。 ジストロフィン遺伝子はX染色体に存在する。この遺伝子はヒトの遺伝子としてDNAレベルで最も長く、220万塩基(ヒトゲノムの0.07%)もの長さがある。一次転写産物は約240万塩基になり、転写には16時間かかる。成熟mRNAは約14,000塩基となる。79のエクソンにコードされ、3500以上のアミノ酸からなる。だが、ヒト最大のタンパクはチチンである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    シクロヘキサノール (cyclohexanol) は二級アルコールで、シクロヘキサン環の一つの水素をヒドロキシ基で置換した分子構造をもつ。溶媒、ガスクロマトグラフィーの基準物質としても用いられる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    トリメチルアミン (trimethylamine) は有機化合物の一種で、最も基本的な第三級アミンである。魚の臭い。 特定悪臭物質として、悪臭防止法の規制対象である。通常、ガスボンベや40%水溶液として販売される。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    タクリン(Tacrine)は、中枢に作用するコリンエステラーゼ阻害剤であり、間接的な(副交感神経作用薬)である。アルツハイマー病の治療のための中枢作用性コリンエステラーゼ阻害剤として初めて認可され、Cognexの商標名で販売された。タクリンは、シドニー大学のによって初めて合成された。また、ヒスタミン-N-メチルトランスフェラーゼの阻害剤としても作用する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ポルフォビリノーゲン (Porphobilinogen) は、 ポルフィリンの生合成にピロールを導入する中間物質である。 ポルフォビリノーゲンは、アミノレブリン酸とアミノレブリン酸脱水酵素により合成される。ポルフォビリノーゲンは、ポルフォビリノーゲン脱アミノ酵素によりヒドロキシメチルビランに結合、変換される。 急性間欠性ポルフィリン症 は、尿中ポルフォビリノーゲンを増加させる原因となる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    4-tert-ブチルカテコール(英: 4-tert-Butylcatechol、略称 TBC)はカテコールの誘導体の一つで、化学式C10H14O2の有機化合物である。4-tert-ブチルピロカテコールとも呼ばれる。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    2-アミノイソ酪酸(2-Aminoisobutyric acid, AIB)または2-メチルアラニン(2-methylalanine)は、構造式H2N-C(CH3)2-COOHのタンパク質を構成しないアミノ酸の1つである。天然では珍しく、や等の菌類起源の抗生物質に見られるだけである。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    ストロメリシン2(ストロメライシン2、英: stromelysin 2、EC 3.4.24.22)もしくはマトリックスメタロプロテイナーゼ-10(英: matrix metalloproteinase 10、MMP-10)、酵素である。この酵素は、ストロメリシン1と同様の基質特異性を持つが、III型、IV型、V型のコラーゲンに対する活性は弱い。 この酵素は、ペプチダーゼファミリーM10に属する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)

    Carbon dioxide (chemical formula CO2) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 417 ppm (about 0.04%) by volume, having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of global warming and climate change. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water it forms carbonic acid (H2CO3), which causes ocean acidification as atmospheric CO2 levels increase. As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocks dissolve in water or react with acids. CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is also a feedstock for the synthesis of fuels and chemicals. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year). The frozen solid form of CO2, known as dry ice, is used as a refrigerant and as an abrasive in dry-ice blasting. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

    アトバコン(AtovaquoneまたはAtavaquone)はナフトキノン誘導体に属する化合物であり、ニューモシスチス肺炎の治療や予防に使われるほか、プログアニルとの合剤はマラリアの治療にも用いられる。商品名サムチレール。ユビキノンの類縁物質であり、ミトコンドリア内膜でチトクロームbへのユビキノンの結合を阻害し、抗真菌効果を発揮する。

    (Source: http://dbpedia.org/resource/Carbon_dioxide)