• Turbulence
  • A state of fluid (wind) flow in which the instantaneous (wind) velocities exhibit irregular and apparently random fluctuations so that in practice only statistical properties can be recognized and subjected to analysis.  
Abstract from DBPedia
    In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers. Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent. Turbulence is caused by excessive kinetic energy in parts of a fluid flow, which overcomes the damping effect of the fluid's viscosity. For this reason turbulence is commonly realized in low viscosity fluids. In general terms, in turbulent flow, unsteady vortices appear of many sizes which interact with each other, consequently drag due to friction effects increases. This increases the energy needed to pump fluid through a pipe. The onset of turbulence can be predicted by the dimensionless Reynolds number, the ratio of kinetic energy to viscous damping in a fluid flow. However, turbulence has long resisted detailed physical analysis, and the interactions within turbulence create a very complex phenomenon. Richard Feynman has described turbulence as the most important unsolved problem in classical physics. The turbulence intensity affects many fields, for examples fish ecology, air pollution and precipitation.

    乱流(らんりゅう、英: turbulence)は、流体の流れ場の状態の一種。乱流でない流れ場は層流と呼ばれる。 乱流の確立した定義は現時点においても存在しないが、数学的にはナヴィエ・ストークス方程式の非定常解の集合であるということができる。層流と乱流のおおよその区別はレイノルズ数によって判断され、レイノルズ数の値が大きいと乱流と判断される。また、層流が乱流に遷移するときのレイノルズ数を臨界レイノルズ数という。 生活の中でのわかりやすい例としては水道の蛇口から流れる水がある。水道の水は流れが少ないときはまっすぐに落ちるが、少し多くひねると急に乱れ出す。このとき前者が層流、後者が乱流である。生活の中で見られる空気や水の流れはほぼ全てが乱流であるだけでなく、熱や物質を輸送して拡散する効果が非常に強いので、工学的にも非常に重要である。 乱流の数値シミュレーションは、気象予報や自動車等の空力設計からノートパソコンの冷却まで工学的には非常に幅広く利用されている。ゴルフボール表面につけたディンプルによる飛距離延伸(マグヌス効果も参照)、新幹線500系電車パンタグラフの突起による騒音低減などにも乱流の効果が応用されている。 しかし高い計算機性能を要求するため、スーパーコンピュータなどHPC(高性能計算)の重要な用途の一つになっている。

    (Source: http://dbpedia.org/resource/Turbulence)