Integral

prefLabel
  • Integral
definition
  • Quantity integrated over a range of its independent variable
topConceptOf
narrower
inScheme
closeMatch
Abstract from DBPedia
    In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with differentiation, integration is a fundamental, essential operation of calculus, and serves as a tool to solve problems in mathematics and physics involving the area of an arbitrary shape, the length of a curve, and the volume of a solid, among others. The integrals enumerated here are those termed definite integrals, which can be interpreted as the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of an antiderivative, a function whose derivative is the given function. In this case, they are called indefinite integrals. The fundamental theorem of calculus relates definite integrals with differentiation and provides a method to compute the definite integral of a function when its antiderivative is known. Although methods of calculating areas and volumes dated from ancient Greek mathematics, the principles of integration were formulated independently by Isaac Newton and Gottfried Wilhelm Leibniz in the late 17th century, who thought of the area under a curve as an infinite sum of rectangles of infinitesimal width. Bernhard Riemann later gave a rigorous definition of integrals, which is based on a limiting procedure that approximates the area of a curvilinear region by breaking the region into infinitesimally thin vertical slabs. In the early 20th century, Henri Lebesgue generalized Riemann's formulation by introducing what is now referred to as the Lebesgue integral; it is more robust than Riemann's in the sense that a wider class of functions are Lebesgue-integrable. Integrals may be generalized depending on the type of the function as well as the domain over which the integration is performed. For example, a line integral is defined for functions of two or more variables, and the interval of integration is replaced by a curve connecting the two endpoints of the interval. In a surface integral, the curve is replaced by a piece of a surface in three-dimensional space.

    積分法(せきぶんほう、英: integral calculus)は、微分法とともに微分積分学で対をなす主要な分野である。 実数直線上の区間 上で定義される実変数 の関数 の定積分(独: bestimmtes Integral、英: definite integral、仏: intégrale définie) は、略式的に言えば のグラフと 軸、および と で囲まれる 平面の領域の符号付面積として定義される。 「積分」(integral)という術語は、原始関数すなわち、微分して与えられた関数 となるような別の関数 の概念を指すこともあり、その場合不定積分と呼び、 のように書く。 積分法の原理は17世紀後半にニュートンとライプニッツが独立に定式化した。微分積分学の基本定理の発見により、それまで全く別々に発展していた積分法と微分法は深く関連付けられることになる。定理の主張は、 が閉区間 上の実数値連続関数ならば、 の原始関数 が既知であるとき、その区間上における の定積分は で与えられるというものである。こうして積分と微分が微分積分学の基本的な道具となり、科学および工学において様々な応用が成された。微分積分学の創始者たちは、積分を無限小の幅を持つ矩形の無限和と考えたが、数学的に厳密な積分の定義を与えたのはリーマンである。その定義は、曲線で囲まれた領域を薄い短冊に分解して領域の面積を近似する限定的な手順に基づくものであった。19世紀に入ってから、より洗練された積分の概念が現れ始め、積分が行える領域や関数の種類が一般化されていく。線積分は二変数や三変数の関数に対して定義され、積分区間 を平面や空間の二点を繋ぐある種の曲線で置き換えるものになっている。同様に面積分は曲線ではなく三次元空間内の曲面を考えることで得られる。また、微分形式の積分は現代的な微分幾何学において基本的な役割を演じる。これらの積分の一般化はもとは物理学の要請から生じたものであり、多くの物理法則(特に古典電磁気学の諸法則)の定式化に重要な役割を果たした。 これらを含め、現代的な積分の概念は様々に存在する。最も流布している積分論は、ルベーグの創始した、ルベーグ積分と呼ばれる数学的な抽象論であろう。

    (Source: http://dbpedia.org/resource/Integral)